Moment - Axial Force Interaction Report and Program

Mehdi Vojoudi Vojoudi@vojoudi.com

THINK GLOBAL, ACT LOCAL

Spring 2003

1. Scope

Calculate the moment – axial force interaction curve for a hinged column with variable slenderness (λ), initial crooked $w_0(x) = 0.001l \sin \frac{\pi x}{l}$. The end moments are M₀ and β M₀.

Concepts:

- a. Column section profile is IPB.
- b. Choose capacity curve from Chen of nethercot curves.
- c. Calculate every point of the interaction curve according to the contact point of capacity curve and elastic M-P curve.

2. Moment equation

At first we should find the column curvature differential equation and then solve it to find the moment distribution along the column (member). So we draw a schematic view of column end conditions, curvature and loadings direction Fig 2.1.

Fig 2.1 Column diagram

$$M(x) = Pw + M_0 + \frac{(\beta - 1)M_0}{l}x$$
 (1)

But we know:
$$\begin{cases} M = -EIW''_{total} \\ W''_{total} = w'' - w''_{0} \end{cases} \Rightarrow M = -EI(w'' - w''_{0})$$
(2)

(1) & (2)
$$\rightarrow -EIw'' + EIw''_0 = Pw + M_0 + \frac{(\beta - 1)M_0}{l}x$$

 $EIw'' + Pw = EIw''_0 - M_0 - \frac{(\beta - 1)M_0}{l}x$
 $\frac{P}{EI} = \mu^2 \Rightarrow w''(x) + \mu^2 w(x) = w''_0(x) - \frac{M_0}{EI} - \frac{(\beta - 1)M_0}{EIl}x$ (3)

$$w_{0}(x) = 0.001l \sin \frac{\pi x}{l}$$

$$w_{0}'(x) = 0.001\pi \cos \frac{\pi x}{l}$$

$$w_{0}''(x) = -\frac{0.001\pi^{2}}{l} \sin \frac{\pi x}{l} \qquad (4)$$

(3) & (4)
$$\rightarrow w''(x) + \mu^2 w(x) = -\frac{0.001\pi^2}{l} \sin \frac{\pi x}{l} - \frac{M_0}{EI} - \frac{(\beta - 1)M_0}{EIl} x$$

Solving the above equation:

a. Solving the homogeneous equation

$$w''(x) + \mu^2 w(x) = 0 \Longrightarrow w_h(x) = c_1 \sin \mu x + c_2 \cos \mu x$$

b. solving the no homogeneous equation:

Part I:

$$w''(x) + \mu^2 w(x) = -\frac{0.001\pi^2}{l} \sin \frac{\pi x}{l}$$

$$\Rightarrow w_{P1}(x) = c_3 \sin \frac{\pi x}{l} + c_4 \cos \frac{\pi x}{l}$$

Part II:

$$w''(x) + \mu^2 w(x) = -\frac{M_0}{EI}$$

 $\Rightarrow w_{P2}(x) = c_5$

Part III:
$$w''(x) + \mu^2 w(x) = -\frac{(\beta - 1)M_0}{EIl}x$$

 $\Rightarrow w_{P3}(x) = c_6 x + c_7$

Assigning these three parts of answer by super position principle:

$$\Rightarrow w_P(x) = c_3 \sin \frac{\pi x}{l} + c_4 \cos \frac{\pi x}{l} + c_5 + c_6 x + c_7$$

$$w_{P}(x) = c_{3} \sin \frac{\pi x}{l} + c_{4} \cos \frac{\pi x}{l} + c_{6} x + (c_{5} + c_{7})$$
$$w_{P}'(x) = c_{3} \frac{\pi}{l} \cos \frac{\pi x}{l} - c_{4} \frac{\pi}{l} \sin \frac{\pi x}{l} + c_{6}$$
$$w_{P}''(x) = -c_{3} \frac{\pi^{2}}{l^{2}} \sin \frac{\pi x}{l} - c_{4} \frac{\pi^{2}}{l^{2}} \cos \frac{\pi x}{l}$$

Then we put the results in differential equation:

$$w''(x) + \mu^2 w(x) = -\frac{0.001\pi^2}{l} \sin\frac{\pi x}{l} - \frac{M_0}{EI} - \frac{(\beta - 1)M_0}{EIl} x = -c_3 \frac{\pi^2}{l^2} \sin\frac{\pi x}{l} - c_4 \frac{\pi^2}{l^2} \cos\frac{\pi x}{l} + c_3 \mu^2 \sin\frac{\pi x}{l} + c_4 \mu^2 \cos\frac{\pi x}{l} + c_6 \mu^2 x + \mu^2 (c_5 + c_7)$$

And the constants (C3 \sim C7) will be

1)
$$\mu^2(c_5 + c_7) = -\frac{M_0}{EI} \Rightarrow (c_5 + c_7) = -\frac{M_0}{\mu^2 EI}$$

2)
$$-\frac{(\beta-1)M_0}{EIl}x = c_6\mu^2 x \Rightarrow c_6 = -\frac{(\beta-1)M_0}{\mu^2 EIl}$$

3)
$$-c_4 \frac{\pi^2}{l^2} \cos \frac{\pi x}{l} + c_4 \mu^2 \cos \frac{\pi x}{l} = 0 \Longrightarrow c_4 = 0$$

4)
$$-c_3 \frac{\pi^2}{l^2} \sin \frac{\pi x}{l} + c_3 \mu^2 \sin \frac{\pi x}{l} = -\frac{0.001\pi^2}{l} \sin \frac{\pi x}{l}$$

$$c_{3}(\mu^{2} - \frac{\pi^{2}}{l^{2}}) = -\frac{0.001\pi^{2}}{l} \Rightarrow c_{3} = \frac{-\frac{0.001\pi^{2}}{l}}{\mu^{2} - \frac{\pi^{2}}{l^{2}}}$$
$$\Rightarrow c_{3} = \frac{\frac{\pi^{2}}{l^{2}}(0.001l)}{\frac{\pi^{2}}{l^{2}} - \mu^{2}} = \frac{1}{1 - \frac{P}{P_{E}}}(0.001l)$$

Then we assign these constants in particular answer:

$$w_p(x) = \frac{1}{1 - \frac{P}{P_E}} 0.001l \sin \frac{\pi x}{l} - \frac{(\beta - 1)M_0}{EIl\mu^2} x - \frac{M_0}{EI\mu^2}$$

The general solution are equal to summation of homogeneous and no homogeneous answers :

$$w(x) = w_h(x) + w_p(x)$$

$$\Rightarrow w(x) = c_1 \sin \mu x + c_2 \cos \mu x + \frac{1}{1 - \frac{P}{P_E}} 0.001 l \sin \frac{\pi x}{l} - \frac{(\beta - 1)M_0}{E l l \mu^2} x - \frac{M_0}{E l \mu^2}$$

The constant values of C1 and C2 will be calculated by assigning the boundary conditions in the equation:

$$\begin{cases} w(x=0) = 0 \Rightarrow c_2 - \frac{M_0}{EI\mu^2} = 0\\ w(x=l) = 0 \Rightarrow c_1 \sin \mu l + \frac{M_0}{EI\mu^2} \cos \mu l - \frac{(\beta - 1)M_0}{EI\mu^2} - \frac{M_0}{EI\mu^2} = 0\\ \Rightarrow \begin{cases} c_2 = + \frac{M_0}{EI\mu^2}\\ c_1 = -\frac{M_0}{EI\mu^2} \frac{\cos \mu l}{\sin \mu l} + \frac{(\beta - 1)M_0}{EI\mu^2 \sin \mu l} + \frac{M_0}{EI\mu^2 \sin \mu l} \end{cases}$$

Then the total displacement of the column will be:

$$\Rightarrow w(x) = \left[-\frac{M_0}{EI\mu^2} \frac{\cos\mu l}{\sin\mu l} + \frac{(\beta - 1)M_0}{EI\mu^2 \sin\mu l} + \frac{M_0}{EI\mu^2 \sin\mu l} \right] \sin\mu x + \frac{M_0}{EI\mu^2} \cos\mu x + \frac{1}{1 - \frac{P}{P_E}} 0.001 l \sin\frac{\pi x}{l} - \frac{(\beta - 1)M_0}{EIl\mu^2} x - \frac{M_0}{EI\mu^2}$$

$$\Rightarrow w'(x) = \left[-\frac{M_0}{EI\mu} \frac{\cos\mu l}{\sin\mu l} + \frac{(\beta - 1)M_0}{EI\mu\sin\mu l} + \frac{M_0}{EI\mu\sin\mu l} \right] \cos\mu x - \frac{M_0}{EI\mu} \sin\mu x + \frac{\frac{\pi}{l}}{1 - \frac{P}{P_E}} 0.001l\cos\frac{\pi x}{l} - \frac{(\beta - 1)M_0}{EIl\mu^2} \right]$$

The total curvature:

$$\Rightarrow w''(x) = -\left[-\frac{M_0}{EI}\frac{\cos\mu l}{\sin\mu l} + \frac{(\beta - 1)M_0}{EI\sin\mu l} + \frac{M_0}{EI\sin\mu l}\right]\sin\mu x - \frac{M_0}{EI}\cos\mu x - \frac{\frac{\pi^2}{l^2}}{1 - \frac{P}{P_E}}0.001l\sin\frac{\pi x}{l}$$

And now we can find the moment in each section (x) according to the curvature of the column.

$$M(x) = -EI(w''(x) - w_0''(x))$$

$$M(x) = \left[-M_0 \frac{\cos \mu l}{\sin \mu l} + \frac{(\beta - 1)M_0}{\sin \mu l} + \frac{M_0}{\sin \mu l} \right] \sin \mu x + M_0 \cos \mu x + \frac{EI \frac{\pi^2}{l^2}}{1 - \frac{P}{P_E}} 0.001 l \sin \frac{\pi x}{l}$$

$$-\frac{EI\pi^2}{l^2} 0.001 l \sin \frac{\pi x}{l}$$

$$M(x) = M_0 \frac{(\beta - \cos \mu l)}{\sin \mu l} \sin \mu x + M_0 \cos \mu x + \frac{P}{1 - \frac{P}{P_E}} 0.001 l \sin \frac{\pi x}{l}$$

This moment equation will be used to find the moment distribution along the column.

3. Capacity curves

Chen and Nethercot suggested two capacity equations:

3.1. Chen 1971

Chen suggested equation (3-1) where a_1 , a_2 and a_3 depend on the column section profile and also the numbers of the profile, but the average values are listed below:

$$\frac{M}{M_P} + a_1(\frac{P}{P_Y}) + a_2(\frac{P}{P_Y})^2 = a_3$$
(3-1)

Wide flange profiles bent on strong axe:

Condition	a_1	a ₂	a_3
$0 < \frac{P}{P_{Y}} \le 0.225$	0	2.378	1
$2.225 < \frac{P}{P_{Y}} \le 1$	1.03	0.085	1.115

Wide profiles bent on weak axe:

Condition	a_1	a ₂	a ₃
$0 < \frac{P}{P_{Y}} \le 0.225$	0	0.185	1
$2.225 < \frac{P}{P_{Y}} \le 1$	-0.821	1.709	0.888

3.2. Nethercot 1989

Nethercot suggested another form of capacity curves that just differ in coefficients. The average values are listed bellow:

Wide profiles, bent on strong axe:

Condition	a_1	a ₂	a ₃
$0 < \frac{P}{P_{Y}} \le 0.2$	0	2.5	1
$2.2 < \frac{P}{P_{\gamma}} \le 1$	1.125	0	1.125

Wid	le pro	files,	bent	on	weak	axe:
-----	--------	--------	------	----	------	------

Condition	a_1	a_2	a_3
$0 < \frac{P}{P_{Y}} \le 0.447$	0	0.5	1
$447 < \frac{P}{P_{Y}} \le 1$	0	1.125	1.125

Note that in this curves the capacity of the section is important and we don't care about buckling because buckling occurs in the member not section.

4. Elastic M-P curve

The moment equation calculated in section 2 will be used to find the maximum moment in member depend on a specified end moment (M_0) with varying P from 0 to P_y . Because the M_0 changes between 0 and M_y , if the results be drawn it will call Elastic M-P curve as the moment are not greater than the yield moment.

The algorithm for this procedure is simple, just in two loops, the first for P variations and the inner loop for x variations along the member from 0 to L (length of the member). Further information on this algorithm will be given in next sections.

5. Interaction curve

Interaction curve will be made by the M_0/Mp and P/Py depends on the contacting point of Capacity curve and Elastic M-P curves. Results of the calculated curves are illustrated in section 9.

6. calculation algorithm

Chart 6-1 illustrates the algorithm diagram of the interaction procedure. The initial values for M and P will be very small such 0.001 and for x will be zero.

Chart 6.1 calculation algorithm

7. Interaction program source

The language of this program is Visual Basic, and because this program can calculate different materials, sections, loading conditions and different capacity curves it may be seem complicated, but the main segment for calculation is simple. Here are the comments for different segments.

7.1. Global variables definition

In this segment the global variables defined and the comments for every variable are in the bellow.

Section Area
Section Moment of inertia
Section Module
Gyration
Slenderness
Yield Stress
elastic modulus
end moment ratio
number of Pi = 3.14

Capacity Curve Parameters depend on what method selected (Chen pr Nether cot)

Dim CapacityA1 As Single	a1 for P/Py < 0.225
Dim CapacityA2 As Single	a2
Dim CapacityA3 As Single	a3
Dim CapacityA4 As Single	a1 for P/Py > 0.225
Dim CapacityA5 As Single	a2
Dim CapacityA6 As Single	a3
Dim CapacityLimit As Single	depend on the method the point of slope changing
	0.225 for Chen and 0.2 for Nethercot

' calculation parameters for increasing steps

Dim Pincrease As Double	axial force increasing step by : Pincrease * Py
Dim Mincrease As Double	Moment increase step by : Mincrease * Mp
Dim xIncrease As Double	X increase for calculation maximum of moment :
	xincrease* length

7.2. Information collecting

After clicking the "Go" bottom the information of the form will be gathered by a procedure called data. There is no calculation is this procedure and just collect the data from the form and assign the values to variables according the selected methods and values.

Sub data()

Selecting the Section prope	erties
Select Case List1.ListIndex	
Case 0	IPB 100
Area $= 26$	
Ix = 450	
Sx = 89.9	
rx = 4.16	
Case 1	IPB 120
Area = 34	
Ix = 864	
Sx = 144	
rx = 5.04	
Case 2	IPB 140
Area $= 43$	
Ix = 1510	
Sx = 216	
rx = 5.93	
Case 3	IPB 160
Area = 54.3	
Ix = 2490	
Sx = 311	
rx = 6.78	
Case 4	IPB 180
Area = 65.3	
Ix = 3830	
Sx = 426	
rx = 7.66	
Case 5	IPB 200
Area = 78.1	
Ix = 5700	
Sx = 570	
rx = 8.54	
Case 6	IPB 220
Area = 91	
Ix = 8090	
Sx = 736	
rx = 9.43	
Case 7	IPB 240
Area = 106	
Ix = 11260	
Sx = 938	
rx = 10.3	
Case 8	IPB 260
Area = 118	
Ix = 14920	
Sx = 1150	
rx = 11.2	

Case 9	IPB 280
Area = 131	
Ix = 19270	
Sx = 1380	
rx = 12.1	
Case 10	IPB 300
Area = 149	
Ix = 25170	
Sx = 1680	
rx = 13	
End Select	
selecting the slenderness of colu	mn
sngSlender = CSng(Text4.Text)	
Yield stress	
intZigma = CInt(Text2.Text)	
Elastic Modulus	
E = CDbl(Text3.Text)	
Reading Beta from form	
Beta = CDbl(Text1.Text)	
choosing the Capacity Curvetur	
If Option1.Value = True Then	CHEN
CapacityA1 = 0	
CapacityA2 = 2.378	
CapacityA3 = 1	
CapacityA4 = 1.03	
CapacityA5 = 0.085	
CapacityA6 = 1.115	
CapacityLimit = 0.225	
Else	Nether cot
CapacityA1 = 0	
CapacityA2 = 2.5	
CapacityA3 = 1	
CapacityA4 = 1.125	
CapacityA5 = 0	
CapacityA6 = 1.125	
CapacityLimit = 0.2	
End If	
calculation parameters	
Pincrease = CDbl(Text7, Text)	

Pincrease = CDbl(Text7.Text) Mincrease = CDbl(Text8.Text) xIncrease = CDbl(Text9.Text)

End Sub

7.3. Calculation

This is the main procedure of the program, the structure are similar to the calculation algorithm.

Go bottom procedure:

Private Sub Command1_Click() Call data ' collect the information from the form

Definition the local variables

Dim Length As Double	length of the column
Dim Moo As Double	$\mu^2 = P/EI$
Dim Py As Double	Yield Axial Force = Yield Stress (σ) * Area of section (Area)
Dim My As Double	Yield Moment = Yield Stress (σ) * Module of section (Sx)
Dim Mp As Double	Plastic Moment = 1.15 * My

Dim P As Double	variable for axial f
Dim M As Double	variable for M ₀
Dim x As Double	variable for length
Dim Moment As Double	variable for mome
Dim Mmax As Double	Maximum Moment
Dim Pe As Double	Euler Force

orce of the column nt in the x position of column

Output string that contains the P/Py values Output string that contains the M/Mp values An auxiliary variable An auxiliary variable

Setting the variables value

Dim strp As String

Dim strm As String Dim a As Double

Dim b As Double

PI = 3.14Length = sngSlender * rx calculating the length of the column Py = intZigma * Area $Pe = (PI \land 2) * E * Ix / Length / Length$ My = intZigma * Sx Mp = 1.15 * Mystrp = "" strm = "" Picture1.DrawWidth = 1 sets the display monitor properties

Start of calculation of interaction curves M = 0.0001initial value for M₀ -----First Loop------Do While (M <= $1.15 \times My$) P = 0.00001 *Initial value for P* -----Second loop-----Do While ($P \le Py$) $Moo = (P / E / Ix) ^ 0.5$ x = 0.005 * LengthMmax = 0-----Third Loop------Do While ($x \le Length$) Moment = (Beta - Cos(Moo * Length)) * M * Sin(Moo * x) / Sin(Moo * Length) + M * Cos(Moo * x) + (P / (1 - P / Pe)) * 0.001 * Length * Sin(PI * x / Length)

If (Moment > Mp) Then GoTo 10 Checks not to do unnecessary calculation

If (Mmax < Moment) Then Mmax = Moment

End If x = x + xIncrease * Length Increasing x Loop

Compare the Mmax with Capacity curve (Chen or nether cot and If (P / Py) < CapacityLimit Then If (Abs((Mmax / My) - 1.15 * (CapacityA3 - CapacityA1 * (P / Py) - CapacityA2 * (P / Py) ^ 2)) < 0.005) Then Picture1.PSet (M / My / 1.15 * Picture1.Width * 0.95, (1 - P / Py) * Picture1.Height), 0 a = P / Pyb = M / My / 1.15strp = strp + CStr(a) + Chr(13) + Chr(10)strm = strm + CStr(b) + Chr(13) + Chr(10)End If Else If (Abs((Mmax / My) - 1.15 * (CapacityA6 - CapacityA4 * (P / Py) -CapacityA5 * $(P / Py) ^ 2)) < 0.005)$ Then Picture1.PSet (M / My / 1.15 * Picture1.Width * 0.95, (1 - P / Py) * Picture1.Height), 0 a = P / Pyb = M / My / 1.15strp = strp + CStr(a) + Chr(13) + Chr(10)strm = strm + CStr(b) + Chr(13) + Chr(10)End If End If P = P + Pincrease * PyIncreasing P Loop 10 M = M + Mincrease * Mpincreasing M₀ ProgressBar1.Value = (M / Mp) * 100Loop Text5.Text = strp **Write the out put** Text6.Text = strm Write the out put End Sub

8. How to use Program

Interaction program is simple to use and the form is designed user friendly. The different parts of information divided, the best and common values are default and can be changed. (Fig 8.1)

Fig 8.1 Program appearance

8.1 Schematic diagram

This is a schematic diagram for loading condition and end hinges. The β variable can be entered here.

Fig 8.2 schematic diagram of loading conditions

8.2 Section properties

The section size and slenderness can be selected here, fig 8.3.

Section Properties		
Profile Type	Slenderness	
IPB 180 🔼		
IPB 200 💌	20	

Figs 8.3 select the Profile size and slenderness

8.3 Material properties

You can enter the material properties such as yield stress and elastic module it the specified places, Fig 8.4.

Material Properties			
Yield stress : 2400	KN/cm2		
Elastic Modul (E) : 2000000			

Fig 8.4 Material properties

8.4 Calculation parameters

The increasing steps for M_0 , P and x can be defined and changed here. Note that the steps influence the accuracy of the results.

Calculation Parameters		
P increase step	0.001	Ру
Moment increase	0.005	Мр
X increase step	0.01	L

Fig 8.5 increasing steps

8.5 Capacity equation

The capacity equation can be selected here to be used in calculations. The selectable equations are Chen 1971 and Nether cot 1989. The capacity curve will be plotted by clicking the DRAW bottom.

Capacity Equation		Draw the Capacity
 Chen 1971 Nethercot 1989 	DRAW	curve

Fig 8.6 Capacity equation selection

8.6 Go bottom

This bottom, starts the calculation of the interaction curve and by calculating each point, it will be plotted on the display monitor.

8.7 Progress bar

During the calculation, this will show the progress.

8.8 Results

There are two columns that show the results of calculation for P/Py and M/Mp that can be easily selected or printed.

Fig 8.9 Results

8.9 Display monitor

Displays a schematic plot of results, It can be cleared and the back color can be changed

Fig 8.10 Display monitor

9. Results

The results for slenderness equal to zero, 20,40,60,80,100 and 120 are shown in fig 9.1 to fog 9.7. *Note that in Slenderness equal to zero the interaction curve is the same for capacity curve*. The results are for default values.

Fig 9.1

Fig 9.3

Fig 9.4

Fig 9.5

Fig 9.6

Fig 9.7