

Open-File Report

92-296A

BAP: Basic Strong-Motion Accelerogram Processing

 Software; Version 1.0

 April M. Converse and A. Gerald Brady

United States Department of the Interior

Geological Survey

UNITED STATES DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

BAP:
Basic Strong-Motion Accelerogram Processing Software

Version 1.0

by
April M. Converse

with Chapter 5 by

April M. Converse and A. Gerald Brady

Open-File Report 92-296A

01 March 92

This report is preliminary and has not been reviewed for
conformity with U. S. Geological Survey editorial standards.

Any use of trade, product, or firm names is for descriptive
purposes only and does not imply endorsement by the
USGS.

Although this software has been used by the U.S. Geological
Survey, no warranty, expressed or implied, is made by the
USGS as to the accuracy and functioning of the software and
related material, nor shall the fact of distribution constitute
any such warranty, and no responsibility is assumed by the
USGS in connection therewith.

Version 1.0

Open-File Reports are Distributed by:

Books and Open-File Reports Section
U.S. Geological Survey

Box 25425, Federal Center
Denver, Colorado 80225

(303) 236-7476

Version 1.0

i

Table of Contents

Preface iii
Acknowledgments iv

Chapters

1.0 Introduction 1-1
 1.1 Time-Series Data Files 1-1
 1.2 Computers 1-2
 1.3 PCs 1-2
 1.4 Abbreviations and typographic conventions used in this report 1-3
 1.5 Running BAP 1-3

2.0 BAP Processing Steps 2-1
 2.1 INPUT 2-2
 2.2 INTERP: Interpolation 2-2
 2.3 LINCOR: Linear Corrections 2-2
 2.4 PAD: Add Leading and Trailing Zeros 2-3
 2.5 INSCOR: Instrument Correction 2-4
 2.6 HICUT: High-Cut Filter 2-4
 2.7 DECIM: Reduce Sampling Rate 2-4
 2.8 LOCUT: Low-Cut Filter 2-5
 2.9 AVD: Calculate Velocity & Displacement 2-6
 or Acceleration & Displacement
 2.10 FAS: Fourier Amplitude Spectrum 2-7
 2.11 RESPON: Response Spectra 2-7

3.0 BAP Input/Output files 3-1
 3.1 Input Files 3-1
 3.2 Output Files 3-1

4.0 BAP Run Parameters 4-1
 4.1 Sample BAP Commands and Run Parameter Settings 4-1
 4.2 Commands that Require More than One Line 4-3
 4.3 Default Run Parameter Settings 4-3
 4.4 Run Parameter Assignment Statements 4-5
 4.5 Processing Step Names in Run Parameter Lists 4-6
 4.6 Parameter Names and Assignment Values 4-7

5.0 Guidelines for Selecting BAP run Parameters 5-1
 5.1 Interpolation, Decimation, and Alias Errors 5-3
 5.2 Instrument Correction & High-Cut Filter Parameters 5-4
 5.3 Pre-filter Pads 5-8
 5.4 Tapers 5-11
 5.5 Velocity and Displacement 5-13
 5.6 Low-Cut Filter Corners 5-13
 5.7 Filter Transitions 5-15
 5.8 Fourier Amplitude Spectra 5-16
 5.9 Response Spectra 5-17
 5.10 Some Sample Command Lines 5-18
 5.11 Run Messages 5-19

Version 1.0

ii

6.0 Support Programs 6-1

7.0 Plots 7-1
 7.1 Plotting Programs 7-1
 7.2 Screen Plots 7-2
 7.3 Plotting on Computers other than PCs 7-2
 7.4 TSPLOT, Time-Series Plotting Program 7-3

Appendixes

A. Quick Reference A-1

B. Two Sample BAP Runs B-1
 B.1 Commands for First Example B-2
 B.2 Commands for Second Example B-4
 B.3 Results from the First Example B-6
 B.4 Results from the Second Example B-12

C. Run-Time Comparisons C-1

D. Acquiring BAP software D-1

E. Installing BAP on IBM personal computers E-1
 E.1 Installation Overview E-2
 E.2 Installation Steps E-3
 E.3 Test Runs E-9
 E.4 Archived Distribution Files E-12
 E.5 Unarchived Distribution Files E-13

F. Trouble Shooting F-1
 F.1 Run Messages F-1
 F.2 Disk Space F-1
 F.3 RAM Space F-2
 F.4 Extended RAM on PCs F-2
 F.5 The infile Parameter in BAPʹs Run Parameter List F-5
 F.6 Using & and @ in Long Command Lines F-6
 F.7 File Names F-6
 F.8 BAP Output Files F-7
 F.9 PC Screen-Plotting Programs F-7
 F.10 The PC/DOS ʺagrootʺ Environment Variable F-7
 F.11 The Size of the DOS ʺEnvironment Spaceʺ on PCs F-7
 F.12 Technical Support F-9

G. Programming Considerations G-1
 G.1 SCATTR and GATHER G-1
 G.2 Programming for PCs G-3
 G.3 Computers other than PCs G-4
 G.4 Plotting Code G-5
 G.5 Sample Code G-6
 G.6 Programming Notes G-6

Version 1.0

iii

H. Fortran Code H-1
 H.1 Include files H-4
 H.2 BAP2.FOR H-8
 H.3 BAPSPS.FOR H-16
 H.4 BAPPAD.FOR H-18
 H.5 FDIC.FOR H-22
 H.6 BIHIP.FOR H-30
 H.7 BAPFAS.FOR H-32
 H.8 BAPRSC.FOR H-36
 H.9 CMPMAX.FOR H-38

References & Bibliography R-1

Version 1.0

iv

Preface

 This report describes one of the computer programs used at the U.S. Geological
Survey (USGS) for processing digitized strong-motion accelerograms. The
program, named BAP, can process time series data files from the Strong-Motion CD-
ROM that is available from the USGS (Reference [20], by Seekins and others).
Consequently, the BAP program should provide useful data processing functions to
organizations outside the USGS that have acquired that CD-ROM. This report is a
userʹs guide for members of the USGS who use the software as well as for members
of other organizations who acquire the software from the USGS.

 BAP is a new, preliminary program. All the computing subroutines, those listed
in Appendix H, have been thoroughly tested, but the overhead subroutines have not.
BAP users are encouraged to mail the author evidence of any problems or
inconveniences encountered while running BAP.

 01 March 1992

 April Converse
 ES&G Data Project (BAP)
 U.S. Geological Survey, Mail Stop 977
 345 Middlefield Road
 Menlo Park, CA, 94025-3591 USA

 Telephone: (415) 329-5666
 FAX: (415) 329-5163

Version 1.0

v

Acknowledgments

 This report and the software it describes result from the cooperative efforts of
many members of the USGS. Some of the Fortran subroutines that make up the
program were written by authors from organizations other than the USGS. These
subroutines are used in BAP with permission. They were written by I.M. Idriss while
at the University of California at Berkeley; Keith McCamy while at Lamont-Doherty
Geological Observatory; Norman Brenner while at MIT Laboratory; and the authors
of the textbook Numerical Recipes (Reference [18]).

 All of the software tools used to construct BAP and its support programs on
VAX computers were provided by the VAX/VMS operating system. Software from
several sources was used to construct the PC versions of the programs, however.
The PC software packages employed for the effort were: the Microsoft Fortran
Compiler; the Lahey F77L-EM/32 Fortran compiler; the Ergo/OS Dos Extender; the
ForWarn static Fortran syntax analyzer by Quibus, Inc.; the PKZIP file compression
software by PKWARE, Inc.; and the Norton AntiVirus software by Peter Norton
Computing, Inc. This report was formatted with the Microsoft WORD software for
PCs.

BAP page 1-1
 01mar92 Introduction

Version 1.0

Chapter 1

Introduction

 The BAP computer program can be used to process and plot digitized strong-
motion earthquake records. BAP will calculate velocity and displacement from an
input acceleration time series or it will calculate acceleration and displacement from
an input velocity time series. The program will make linear baseline corrections,
apply instrument correction, filter high frequency and/or low frequency content
from the time series, calculate the Fourier amplitude spectrum, and calculate
response spectra. It will also plot the results after each processing step.

 BAP is one of a group of programs, the AGRAM programs1, that were
developed at the USGS to process digitized analog strong-motion records. Digitally
recorded data, after preliminary processing unique to each recording device, can also
be processed by BAP.

1.1 Time-Series Data Files

 BAP reads its input time series from a disk file that must be in one of two
formats: "SMC" format or "BBF" format. The SMC format is that used for the time
series files stored on the Strong-Motion CD-ROM available from the USGS2. The
BBF format is the blocked-binary file format used for most of the time series data files
in the Engineering Seismology and Geology data collection at the USGS in Menlo
Park. More information about the time-series data files is given in Chapter 3 and
details about the two file formats are given in the smcfmt.doc and bbffmt.doc
documentation files that are included among the BAP software distribution files.

 Those who are willing to reprogram some of the Fortran code used to
implement BAP can modify the program so it will accept input files in other formats.
Several of the support programs (IMPORT, EXPORT, and BBDATA) discussed in
Chapter 6 perform data file reformatting functions and they too could be modified to
handle other formats. Refer to Appendix G for programming guidelines.

1 Reference [7], by Converse (1984).
2 Reference [20], "Digitized Strong-Motion Accelerograms of North and Central American

Earthquakes 1933-1986", by Seekins and others, is a CD-ROM that contains more
than 4,000 time-series data files. CD-ROMs are read-only compact disks that can
be read by a computer, provided a CD-ROM reader is installed on the computer.
The disks are the same as those used for compact-disk musical recordings.

 page 1-2 BAP
 Introduction 01mar92

Version 1.0

1.2 Computers

 BAP has been installed and tested on VAX computers running the DEC VMS
operating system (version 5.4) and on IBM-style, 80386, personal computers running
the Microsoft DOS operating system (version 3.3). See Appendix C for a table that
indicates the time it takes to run the BAP examples shown in Appendix B on several
different computers.

 BAP and its support programs are available for PCs as executable files and as
Fortran files; they are available only as Fortran files for other computers. See
Appendix D for distribution information.

 BAP is coded in Fortran that conforms to the ANSI Fortran 77 standard.
Consequently, BAP should be transportable to any computer having a "full" Fortran
77 compiler. Preliminary guidelines for modifying the BAP code and for
transporting BAP to computers other than VAXes or PCs are given in Appendix G.
More detailed guidelines are given in the progbap.nts and progagram.nts
files included among the BAP software distribution files.

1.3 PCs

 The executable files included among the PC software distribution files require
an IBM-style PC or "clone" having:

 ∙ an 80386 or and upward-compatible CPU such as an 80486;
 ∙ an 80387 math coprocessor;
 ∙ a hard disk with 10M bytes or more available;
 ∙ a 1.44M byte, 3.5" floppy disk drive (for the distribution diskettes);
 ∙ 3M bytes or more of RAM;
 ∙ DOS version 3.3 or greater;
 ∙ a PostScript printer or PostScript-to-other-printer translating software; and
 ∙ a text editor (the "EDIT" editor that comes with DOS 5.0 will do) or a word

processor that will create and edit character-only files.

Fortran files as well as executable files are included among the PC/BAP software
distribution files so those who wish to tailor the software for their own computer or
their own needs may do so.

 The PC version of BAP, as distributed in executable form, uses "DOS extending"
software to access memory above the 640K DOS-imposed memory limit. The DOS
extender used is "Ergo OS/386" as provided with the "Lahey F77L-EM/32" Fortran
compiler. BAP and OS/386 do not require additional memory management
software, but they are compatible with any expanded-memory-managing software
packages that comply with the VCPI standard. These include, but are not limited to:

 ∙ 386MAX (version 4.0 or higher)
 ∙ QEMM (version 4.2 or higher)
 ∙ CEMM (version 6.0 or higher)

BAP and Ergo OS/386 are compatible with Quarterdeck's "DESQview" multitasking
software, but they are not compatible with Microsoft "Windows". (A Windows-
compatible version of BAP might be provided with future versions of the BAP
distribution files if users indicate a need for such.)

 BAP page 1-3
 01mar92 Introduction

Version 1.0

1.4 Abbreviations and Typographic Conventions used in this Report

 Throughout this report, the term "VAX" is used to refer to a VAX computer
running the VMS operating system, and the term "PC" is used to refer to an IBM-style
80386 personal computer running the IBM PC-DOS or the Microsoft MS-DOS
operating system.

 Two typefaces are used in this report. This typeface is used for normal text and
this typeface is used to represent characters that one might see on the computer
screen or in computer print-outs. The computer typeface is frequently mixed in with
normal text to emphasize words that can be used as BAP run parameters (e.g.,
infile, infmt, eda.r01, bbf) or words that represent operating-system level
commands (e.g., bap, scrplot, print). Underlined italics (underlined
italics) are used to indicate names of items the user should supply. And doubly-
underlined italics (doubly-underlined italics) are occasionally used in
Chapter 7 (about plots) and Appendix A (the quick-reference Appendix) to indicate
names of items the user must supply, as distinct from singly-underlined items that
the user may choose whether to supply or not.

 The prompt from the VAX/VMS operating system is shown as vax$; the
prompt from the PC/DOS operating system is shown as dos>; and a generic
computer prompt is shown as $|>. The generic prompt indicates that the sample
command that follows would have the same effect on a PC as on a VAX. For
instance, the following line illustrates a type command that a user might enter in
response to the prompt from the PC/DOS operating system:

 dos> type \agram\docs\smcfmt.doc

The type command, which is available in DOS and in VMS, is used to display the
contents of a text file on the user's screen. The corresponding command on a
VAX/VMS computer would be:

 vax$ type [agram.docs]smcfmt.doc

And the following command would work on either computer, provided that the
smcfmt.doc file were located in the user's current disk directory:

 $|> type smcfmt.doc

 PC/DOS path name conventions are usually used in this report rather than the
VAX conventions except where command lines that would work on a VAX but not
on a PC are shown. The file and directory hierarchy for the BAP distribution files
should be the same on both types of machines, only the characters used to describe
the hierarchy would be different. The PC/DOS operating system requires directory
paths to be expressed with backslash characters separating directory names and file
names, while the VAX/VMS operating system requires brackets and dots. For
example, the smcfmt.doc file should be found in a directory named docs under
a directory named agram. The path name for the file on a PC would be:
\agram\docs\smcfmt.doc and on a VAX it would be:
[agram.docs]smcfmt.doc.

1.5 Running BAP

 The user indicates the processing steps BAP should perform on the command
line used to invoke the program. Such information is referred to as the "run
parameters" throughout this report. The run parameters may be given on the

 page 1-4 BAP
 Introduction 01mar92

Version 1.0

command line or they may be given in a separate text file, the name of which is then
given on the BAP command line. The name of a file that contains run parameters is
prefaced by an "@" character on the BAP command line to distinguish a run-
parameters file from an input time-series data file. Here are some examples of valid
BAP command lines:

 $|> bap
 $|> bap tsdata.smc
 $|> bap @doit.brp
 $|> bap tsdata.smc, @smc.brp, corner=0.13
 $|> bap infile=tsdata.smc, inscor, &
 locut(f),corner=0.13, avd(f), fas(p) done
 $|> bap bapacc.bbf, respon(f,p)
 $|> bap show

A description of each of these commands is given in Section 4.1 of Chapter 4. All of
the BAP run parameters are described in Chapter 4, the processing steps are
described in Chapter 2 and guidelines for running BAP are given in Chapter 5.

 BAP page 2-1
 01mar92 Processing Steps

Version 1.0

Chapter 2

BAP Processing Steps

 The BAP processing steps, the names by which each is indicated in a BAP run-
parameters list, and the order in which they are performed are:

Step Name Process

INPUT Read the run parameters and the input time series data file.
INTERP Linearly interpolate an input time series given as unevenly-sampled

(x,y) pairs to evenly-sampled y-values. This step is required for
an unevenly-sampled input series because all the subsequent
processing steps require an evenly-sampled series. This step is
not required for input time series, such as those that come from
the Strong-Motion CD-ROM1, that are already evenly-sampled
at the desired sampling rate.

LINCOR Subtract a straight line from the input time series. The line can be
the linear least-squares fit to the time series, the mean value of
the time series, or a user-specified constant. This step will not
be required for input files, such as those from the USGS, that
have already had similar processing applied. It will be required
for some of the files on the Strong-Motion CD-ROM that did not
originate at the USGS, however. Other linear corrections may
be applied in the AVD step.

PAD Add leading and trailing zeros to the time series, in preparation for
the HICUT and LOCUT filters.

INSCOR Instrument correct to compensate for the diminishing response of a
damped, spring-mass, single-degree-of-freedom, optical-
mechanical accelerometer (hereinafter referred to as a "spring-
mass accelerometer") at higher frequencies, and apply the
HICUT filter.

HICUT Apply a frequency-domain filter to remove high-frequency content
from the time series. The filter is normally applied as part of
the INSCOR step, but it can be requested as a separate step
when the INSCOR step is not used.

DECIM Reduce the sampling rate by removing all but the first of each 3 (or
ndense) samples. This step will not be required for input files

1 Reference [20], by Seekins and others.

 page 2-2 BAP
 Processing Steps 01mar92

Version 1.0

 that come from the Strong-Motion CD-ROM. It should only be
used on very densely digitized data.

LOCUT Apply a bidirectional Butterworth filter to remove low frequency
content from the time series.

AVD Integrate the acceleration time series once to calculate a velocity time
series, twice to calculate a displacement time series. Or, if the
input time series represents velocity rather than acceleration,
differentiate the velocity time series to calculate an acceleration
time series and integrate the velocity to calculate displacement.

FAS Calculate the Fourier amplitude spectrum of acceleration.
RESPON Calculate response spectra at several specified damping ratios.

 The processing steps are described in further detail in the paragraphs that
follow and guidelines for using each step are given in Chapter 5 along with warnings
about their limitations and side effects. The BAP run-parameter names used in these
descriptions are fully described in Chapter 4. Run-parameter names (e.g., infmt)
and assignment statements (e.g., infmt =bbf) are shown in the computer typeface
(this typeface).

2.1 INPUT

 The INPUT processing step reads the run parameters and the input time-series
data file.

2.2 INTERP: Interpolation

 The INTERP processing step linearly interpolates an input time series that was
given as a series of (x,y) pairs to a series of evenly-sampled y-values. The
INTERPolation is required for an unevenly-sampled input series because all the
subsequent processing steps require an evenly-sampled series. The INTERP step
will also linearly interpolate an evenly-sampled input time series to a denser
sampling interval (in which case, the HICUT filter should also be applied -- see
Section 5.1 in Chapter 5).

2.3 LINCOR: Linear Corrections

 The LINCOR processing step subtracts a straight line from the input time series.
The line can be the linear least-squares fit to the time series, the mean value of the
time series, or a user-specified constant. This step is often unnecessary because the
reference trace, then the mean value of the resulting data trace, have usually been
subtracted from each data trace during the preliminary processing of a digitized
analog record. Some of the time series on the Strong-Motion CD-ROM came from
analog records that had no reference trace, however, and these may contain linear
trends that can be removed with the LINCOR step.

 When the linear least-squares fit or the mean value is used in the LINCOR step,
the linear fit or mean value is, by default, calculated from the entire time series. By
using the begfit and endfit run parameters, however, the user can request that
only a portion of the wave-form be used to calculate the line or mean value to be
subtracted from the time series. For example, a digitally recorded time series often
needs to have the average offset of the pre-event portion of the time series subtracted
from the entire time series: to accomplish this, begfit and endfit can be set to
bracket just the pre-event portion.

 BAP page 2-3
 01mar92 Processing Steps

Version 1.0

 When a linear least-squares fit, a mean value, or a constant is subtracted from
the time series, the line or constant is, by default, subtracted from every sample in the
time series. The beglin and endlin run parameters, however, can be used to
indicate the end points of just a section of the time series from which the line or
constant should be subtracted. These two run parameters will rarely be required, but
they might be used, for instance, with the processing technique discussed in
reference [12], by Iwan and others.

 Other linear corrections may be applied in the AVD step. As part of the AVD
process, the user may request that the linear least-squares fit of the velocity be
subtracted from the velocity time series and that the slope of the fit line be subtracted
from the acceleration time series.

2.4 PAD: Add Leading and Trailing Zeros

 The PAD processing step extends the time series in both directions by adding
leading and trailing zeros in preparation for the HICUT and LOCUT filters.
Acausal filters, such as those applied in the HICUT and LOCUT steps, produce
output time series that have non-zero values for times beyond those in the input
series. The non-zero leading and trailing values should be included in the
integrations used in the AVD step, in the Fourier amplitude calculations in the FAS
step, and in the response spectra calculations in the RESPON step. If they are
ignored, the result is to reintroduce frequencies that were removed by the filter.

 By default, when the user does not indicate the pad length via the padsec
parameter, BAP will choose the length based on the transition band parameters,
corner and nroll, used in the LOCUT processing step. The pad length, in
seconds, will be 1.5*nroll/corner. This means that in a typical case where
nroll=1 and corner=0.1, each pad will be 15 seconds long. As there are two
pad areas, one increasing the length of a time series at its beginning, and another at
the end, there will be 30 seconds of padding added in this case. At 200 samples per
second, the time series will be extended by 6,000 points and by much more than that
if nroll is greater than 1 or corner is less than 0.1. The default pad length,
1.5*nroll/corner, may not be adequate for some records. The user should
inspect plots of the padded, filtered acceleration and plots of the velocity and
displacement calculated from that acceleration to verify that the pad lengths used
were sufficiently long. Figures 5.3.a and 5.3.b in Chapter 5 illustrate the effect of
using pads of insufficient lengths.

 Pad lengths required by the LOCUT filter are much larger than those required
by the HICUT filter, so BAP usually does the padding in two steps. Short, two-
second-duration pads are added before the INSCOR (or HICUT) step, then the pads
are extended before the LOCUT step. Otherwise, the INSCOR (or HICUT) step
would take an unnecessarily long while to process an unneccessarily long time series.
The padding sequence can be modified via the jpad run parameter, however.
Refer to Section 4.6 of Chapter 4 for information about jpad.

 If the first or last point of the input time series is significantly different from
zero, there will be a sharp offset in the padded time series where the input samples
meet the pad area. This offset will introduce spurious frequencies ("leakage") into
the series if either of the filters (HICUT or LOCUT) is applied. The ktaper and
tapsec run parameters may be used to minimize the effect of such an offset. When

 page 2-4 BAP
 Processing Steps 01mar92

Version 1.0

ktaper=on, a cosine taper, tapsec seconds long, will be applied at both ends of
the time series. When ktaper=zcross, time series samples before the first zero
crossing and after the last zero crossing will be reset to zero. By default,
ktaper=zcross; if no tapering is required, the user should reset ktaper to off.
Refer to Section 4.6 of Chapter 4 and Section 5.4 of Chapter 5 for information about
ktaper and tapsec. Figure 5.4.a in Chapter 5 illustrates the ktaper options.

2.5 INSCOR: Instrument Correction

 The INSCOR processing step makes a correction to the time series to
compensate for the diminishing response of a spring-mass accelerometer at higher
frequencies.

 The instrument-correcting algorithm is based on the second-order differential
equation representing motion of a single-degree-of-freedom, damped, harmonic
oscillator (see page 46 of reference [11]):
 ai = zi + zi' * 2 * ζ/ω + zi"/ω2

Where:
 ai is the corrected time series;
 zi is the uncorrected, equally sampled, time series;
 zi' is the first derivative of zi;
 zi" is the second derivative of zi;
 ζ is the damping of the recording instrument, as a fraction of critical

damping; and
 ω is the natural frequency of the recording instrument in radians per

second.

 Whenever the INSCOR processing step is requested, the HICUT processing
step is also applied, to remove high-frequency noise that is amplified by the
instrument correction.

 Note that the INSCOR processing step is intended for time series that were
recorded with spring-mass accelerometers and is not suitable for use with time series
recorded by other types of transducers. See Section 5.2 of Chapter 5 for more
information about when the instrument correction step is required and when it is not
appropriate.

2.6 HICUT: High-Cut Filter

 The HICUT processing step applies a filter to remove high frequency content
from the time series. The time series is transformed to the frequency domain by a
fast Fourier transform (FFT), the same transformation used for the INSCOR step.
The high-cut filter is applied by setting samples in the frequency domain to zero
above hitend Hz and weighting the samples between hitbeg and hitend Hz
with a cosine half-bell taper. Hitbeg=50 and hitend=100 in the default case.
After instrument correction (if it were requested) and filtering, the transform is
inverted back to the time domain.

 The HICUT filter is normally applied as part of the INSCOR step, but it can be
requested as a separate step when the INSCOR step is not used.

 BAP page 2-5
 01mar92 Processing Steps

Version 1.0

2.7 DECIM: Reduce sampling rate

 The DECIM processing step reduces the sampling rate by removing all but the
first of each ndense samples. The decimation is done at this point in the
processing, between the INSCOR/HICUT step and the LOCUT step, rather than in
the INTERP interpolation so that the derivatives required in the INSCOR step can
be calculated as accurately as the data will allow. This step will rarely be required
for other than the records digitized by the automatic trace-following laser digitizer2
employed by the USGS, which are digitized at approximately 600 samples per
second. The HICUT filter should be applied whenever DECIMation is used: See
Section 5.1 in Chapter 5.

2.8 LOCUT: Low-Cut Filter

 The LOCUT processing step applies a bidirectional Butterworth filter to remove
low frequency content from the time series. Although some accurately recorded,
accurately digitized records will not require the LOCUT processing, many records
will require that long periods contaminated by noise be filtered from the time series
before reasonable displacements or response spectra can be calculated. Users must
consider for each record whether or not filtering is required. See Chapter 5, Section
5.6 for low-cut filter guidelines.

 The transition of the filter is indicated in the BAP run parameters with a
frequency, corner, that indicates where in the frequency spectrum the transition
between the pass band and the stop band of the filter should occur, and a roll-off
parameter, nroll, that controls the steepness of the transition. Corner is the
frequency, in Hz, in the transition band where the Fourier amplitude is reduced to
one-half by filtering. By default, nroll=1 and corner=* (where "*" indicates
"undefined"). The user or the input file must provide a corner value if the LOCUT
step is to be performed.

 The Fourier amplitude transfer function of the bidirectional Butterworth filter,
Tbi, is given by:
 Tbi(f) = 1 / [1 + (corner/f)4*nroll]

where the independent variable, f, is frequency in Hz.

 The roll-off parameter nroll is equal to half of what is often called the "order"
of a Butterworth filter in conventional terminology. The exponent in the transfer
function equation shown above would be 2N rather than 4*nroll if it were
expressed in terms of a Butterworth "order", N. The number of "poles" in the filter is
4*nroll.

 The LOCUT filter is implemented with a different algorithm than the HICUT
filter for several reasons, the primary reason being historical: BAP evolved from
earlier software in which the two filters were implemented in separate programs.
The predecessor software was intended for use with the densely-digitized records
processed by the USGS, for which the sampling rate is reduced from 600 to 200

2 The automatic trace-following laser digitizer used for many USGS-processed

records is operated by LS Associates; 1707 Lafayette Street, Suite B; Santa Clara,
CA 95050 USA.

 page 2-6 BAP
 Processing Steps 01mar92

Version 1.0

samples per second between the two filters. The low-cut filter requires much longer
pads than does the high-cut filter, so applying the filters in separate steps allows the
combined INSCOR and HICUT processing to be applied to a padded time series that
is shorter than would be required if the LOCUT filter were applied concurrently,
thus saving processing time. Applying the LOCUT filter after DECIMating the
sampling rate from 600 to 200 samples per second reduces the number of samples
that the LOCUT filter would otherwise need to process, again saving processing
time. Also, the high-cut filter used here is applied in the frequency domain as part of
the instrument-correcting step and as a consequence requires very little additional
processing. The low-cut filter cannot be applied in the same process, however,
because the instrument correction and high-cut filter are applied to successive
segments of the time-series, and each segment (3072 samples) is shorter than the
periods affected by the low-cut filter. The bidirectional Butterworth filter algorithm
was selected for the low-cut filter because of its zero phase-shift and its flat response
in the pass band.

2.9 AVD: Calculate Velocity & Displacement or Acceleration &
Displacement

 The AVD processing step results in three separate time series: acceleration,
velocity, and displacement. If, as is usually the case, the input time series represents
the acceleration of a recording instrument, the corrected input acceleration time
series will be integrated twice in the AVD step: once to calculate a velocity time
series, twice to calculate a displacement time series. If, as is the case with some
digitally recorded data, the input time series represents velocity rather than
acceleration, the AVD processing step will differentiate the velocity time series to
approximate an acceleration time series and will integrate the velocity to calculate
displacement.

 Integration is performed using the trapezoidal method and using zero as the
initial velocity and initial displacement. The pads are included in the integration
bounds.
 vi = vi-1 + (ai-1 + ai) * ∆t/2

 di = di-1 + (vi-1 + vi) * ∆t/2

 The acceleration time series, when determined from an input velocity time
series, is calculated by a simple 2-point numerical differentiation:
 ai = (vi - vi-1)/ ∆t

This derivative might not be accurate enough for some purposes, depending on the
sampling rate and the frequency content of the signal. (Future versions of BAP may
provide more accurate algorithms for calculating the AVD derivatives and integrals.)

 Additional processing occurs between the two integrations when velfit=on
(it is off by default), when the input time series is acceleration, and when no
padding or low-cut filter is applied (padsec=0.0 and NOlocut). A fitted line is
subtracted from the velocity and a constant, equal to the slope of the line, is
subtracted from the acceleration. The velocity is then integrated to displacement.
The subtracted line is the linear least-squares fit to the velocity between begfit
and endfit. This option provides a means for estimating the initial velocity in

 BAP page 2-7
 01mar92 Processing Steps

Version 1.0

triggered records. It is effective only with accurately recorded, accurately digitized
records for which a low-cut filter is unnecessary.

2.10 FAS: Fourier Amplitude Spectrum

 The FAS processing step calculates the Fourier amplitude spectrum of the
acceleration time series by transforming the time series from the time domain to the
frequency domain with a fast Fourier transform (FFT), then calculating the scalar
amplitude of each complex sample in the frequency series.

 amplitude of a + bi = √ a2 + b2

 By default, the amplitudes are plotted without further processing, but they often
show such dense fluctuations that the general shape of the curve is obscured. The
nsmooth run parameter can be set to indicate that the squared amplitudes should
be smoothed with a running mean before the square root is taken. Nsmooth
indicates the number of samples used in the running mean. The weighting function
has a triangular shape and has an odd number of terms (if nsmooth is given as an
even number, nsmooth-1 terms are used). When nsmooth=3, for example, the
terms are: 1/4, 1/2, and 1/4. The end points of the squared amplitude series are
smoothed as though the series wrapped around on itself, beginning to end.

2.11 RESPON: Response Spectra

 The RESPON processing step calculates the maximum response of simple
(single degree of freedom, damped, harmonic) oscillators subjected to the
acceleration time series. The maximum response is calculated for oscillators having
damping ratios of 0.0, 0.02, 0.05, 0.1, and 0.2, and for each damping ratio, the
maximum response is calculated for oscillators having natural periods ranging from
0.05 second to 15 seconds. The computation method used is that described in
Reference [16], by Nigam and Jennings.

 If an output file is requested from the RESPON step, the file will contain several
columns of numbers: natural period, cyclic frequency, and angular frequency of the
oscillator, followed by the corresponding absolute acceleration response, "pseudo"
acceleration response, relative velocity response, "pseudo" velocity response, and
relative displacement response. (Response spectra terminology is introduced in
Reference [6], by Chopra.) Values are given in the columns for each of the 86 periods
used to represent the 0.05 to 15 second period range and these 86 rows are repeated
for each of the 5 damping ratios.

 If a plot is requested from the RESPON step, the pseudo relative-velocity
response is shown as a function of oscillator period. The plot will show 5 curves
within a single set of axes, one curve for each damping ratio. The response spectrum
curve for zero damping is shown in a solid line, the spectra for the other damping
ratios are shown with dashed-dotted lines, the number of dots in the line increasing
with increasing damping ratio. A greater variety of response spectra plots could be
generated from the information in the BAP/RESPON output file in a separate
program. Various plotting programs are available commercially for PCs that
generate plots from information given in an ASCII text file (and the BAP/RESPON
output file is an ASCII text file, not a binary file like the blocked-binary time-series
files). A program named RSPLOT that will plot the information in a BAP/RESPON

 page 2-8 BAP
 Processing Steps 01mar92

Version 1.0

output file in a variety of ways may eventually be added to the collection of AGRAM
plotting programs described in Chapters 6 and 7.

 Although the response spectra are routinely calculated for damping ratios of
0.0, 0.02, 0.05, 0.1, and 0.2 and for periods that range from 0.05 to 15 seconds in 85
increments, the user can specify different damping ratios via the sdamp run
parameter and different periods via the sper and sdper run parameters.

 BAP page 3-1
 01mar92 Files

Version 1.0

Chapter 3

BAP Input/Output files

3.1 Input files

 There are two types of BAP input files:

1) time-series data files, which may be in either of two formats, and
2) @-files containing run parameter assignment statements.

Each BAP run requires an input time-series file, but @-files are optional and
unnecessary if the user can fit all required run parameter assignment statements on
the BAP command line. Run parameters and @-files are described in Chapter 4.

 The input time-series file must be in one of two formats: "SMC" format or "BBF"
format. The SMC format is that used for the time series files stored on the Strong-
Motion CD-ROM available from the USGS1. SMC-format files are "text" files: the
information therein is stored in character form using ASCII character codes. Text
files can be viewed and modified with text-editing programs or they can be
displayed with the DOS or VAX type command.

 The "BBF" format is the blocked-binary file format used for most of the time
series data files in the Engineering Seismology and Geology data collection at the
USGS in Menlo Park. The information in BBF time-series data files is stored in binary
form. BBF files are more compact than are SMC files; and BBF files can be read and
written by computer programs more quickly than can text files, like the SMC files.
But BBF files cannot be viewed or modified directly with text-editing programs; their
content must be converted from binary to text first.

 Details about the two time-series file formats are given in the smcfmt.doc and
bbffmt.doc files included among the BAP distribution files.

 The BAP code or the IMPORT/EXPORT support programs could be modified
so time-series files in other formats could be accepted too. See Appendix G.

3.2 Output files

 There are 5 types of BAP output files:

1 Reference [20], by Seekins and others.

 page 3-2 BAP
 Files 01mar92

Version 1.0

1) time-series data files (in SMC or BBF format),
2) Fourier amplitude spectrum files (text),
3) response spectra files (text),
4) plot description files (PostScript text), and
5) run messages files (text).

A run messages file is the only file that is generated in every BAP run; the other files
are generated only if the user requests them in the run parameters via an (f) or (p)
following a step name. (Run parameters are described in Chapter 4 and processing
steps are described in Chapter 2.) The user can specify the first few characters of the
output file names via the idc=whatever run parameter, but the remaining
characters in the file names are fixed by the program.2 When idc=xx and
outfmt=fmt, where fmt=BBF or SMC, then the output file names are:

 file name file content
 xxINOUT.fmt input time series (possibly reformatted)
 xxINTERP.fmt interpolated time series
 xxLINCOR.fmt linearly corrected time series
 xxPAD.fmt padded time series
 xxINSCOR.fmt instrument corrected and high-cut filtered time series
 xxHICUT.fmt high-cut filtered time series. (This file is generated only

when NOinscor is requested; the output from the HICUT
step is normally included in the INSCOR output file.)

 xxDECIM.fmt decimated time series
 xxLOCUT.fmt low-cut filtered acceleration before the velfit correction.

(This file is generated only when velfit=on; the output
from the LOCUT step is normally named xxACC.fmt.)

 xxACC.fmt acceleration
 xxVEL.fmt velocity
 xxDIS.fmt displacement
 xxFAS.TXT Fourier amplitude spectrum
 xxRESPON.TXT response spectra
 xxRUN.MSG a copy of all the run messages that appeared on the screen as

the program executed
 xxPLOTS.APS a plot description file in AGRAM-PostScript format

 It is important that users check the run messages file for warning and error
diagnostics before they trust the validity of the other output files. Diagnostic
messages written by BAP will show three asterisks (***) in the left-hand margin of
the run messages file. These same messages will appear on the user's screen as BAP
is running, but they will often scroll off the screen before the user has a chance to
notice them.

2 If users find the fixed file names inconvenient, the program may be modified in

the future to allow the user to put a filename in the parentheses following a step
name rather than just the f.

 BAP page 4-1
 01mar92 Run Parameters

Version 1.0

Chapter 4

BAP Run Parameters

 BAP acquires its run parameters from the command line that invokes the
program and, optionally, from disk files named on the command line. A disk file
containing run parameters is identified as such on the BAP command line with an
"@" character before the file name. The "@" serves to distinguish the name of a file
that contains run parameters from the name of a file that contains the input time
series.

 Run parameter values are indicated on the BAP command line or in @-files in a
sequence of assignment statements, with each statement having the form
parameter-name=parameter-value. For example, infile=tsdata.smc
indicates that the file named tsdata.smc contains the input time-series data for
the current BAP run. There are variations on the parameter-name=parameter-
value syntax that are discussed in Section 4.4, but the most important of these affect
how the processing step names and the input file name may be specified. Step name
assignment statements need not, and usually do not, include the right-hand side of
the assignment statement, and the left-hand side of the assignment statement need
not be included when the input file name is specified. For instance, locut is
equivalent to locut=on and tsdata.smc is equivalent to
infile=tsdata.smc.

4.1 Sample BAP Commands and Run Parameter Settings

 Here are some sample BAP commands that could be typed in response to the
PC/DOS or VAX/VMS prompt:

 $|> bap
 $|> bap tsdata.smc
 $|> bap @doit.brp
 $|> bap tsdata.smc, @smc.brp, corner=0.13
 $|> bap infile=tsdata.smc, inscor, &
 locut(f),corner=0.13, avd(f), fas(p) done
 $|> bap bapacc.bbf, respon(f,p)
 $|> bap show

 In the first example ($|> bap), there are no parameters on the command line,
only the name of the program. In this case, BAP would merely display brief
instructions, telling the user to provide run parameters on the command line.

 page 4-2 BAP
 Run Parameters 01mar92

Version 1.0

 In the second example ($|> bap tsdata.smc), only the name of a time-series
data file (tsdata.smc) is given on the command line after the program name; no
processing steps are requested explicitly. In response to this command line, BAP
would simply read the tsdata.smc data file, display a summary of the time series
in that file on the user's screen and in a file named baprun.msg1, and write a
PostScript description of a plot of the input time series to the file named
bapplots.aps. The bapplots.aps file may be sent to a PostScript printer
($|> print bapplots.aps) for a hard-copy plot, or the plot may be viewed on
the computer screen by applying the SCRPLOT program to the PostScript file
($|> scrplot bapplots.aps). Refer to Chapters 6 and 7 for information about
SCRPLOT and other plotting functions.

 In the third example ($|> bap @doit.brp), all the run parameters are given
in the disk file named doit.brp and in any other @-files that may be referenced by
doit.brp.

 In the fourth example ($|> bap tsdata.smc, @smc.brp,corner=0.13),
some of the run parameters come from the smc.brp file, while the name of the
input time series file (tsdata.smc), the value for the low-cut filter corner (0.13 Hz),
and the name of the additional-run-parameters file (smc.brp) are given on the
command line.

 The fifth example is equivalent to the fourth example, the only difference being
that all the run parameters are given on the (continued) command line rather than
some being given in an @-file. The ampersand (&) is used at the end of the command
line to indicate that BAP should continue reading its run parameters from the
computer's standard input file.

 In the sixth example, ($|> bap bapacc.bbf, respon(f,p)), all the run
parameters (all two of them) are provided on the command line. The input time
series data file is bapacc.bbf and the only processing step requested is respon,
the response spectra calculations. The input file is the result from the locut filter
step in a previous BAP run.

 The last example ($|> bap show), merely requests that BAP display the
default settings for all the run parameters on the user's screen and write them to a
disk file named baprun.msg. The user could rename and modify the resulting
baprun.msg file to construct a new run parameter file to be used as an @-file on
another BAP command line.

1 By default, all the BAP output files begin with the letters "bap" on a VAX and

with "bp" on a PC. Shorter names are used on the PC due to the 8-character file
name limit imposed by DOS. Consequently, the run messages file is named
baprun.msg on a VAX, bprun.msg on a PC. File names are discussed in
Chapter 3.

 BAP page 4-3
 01mar92 Run Parameters

Version 1.0

4.2 Commands that Require More Than One Line

 An ampersand (&) can be used at the end of the command line to tell the BAP
command-line interpreter to continue reading run parameters from the computer's
standard input stream after the end of the actual command line is encountered.
Here, for example, is a continued BAP command that could be used to run the
second example in Appendix B. Note the "&" character at the end of the first line
and the "DONE" parameter at the end of the list:

 $|> bap idc=a1, andds1.bbf, &
 INPUT(f)
 INTERP, spsnew=600 ! << only for densely digitized data
 PAD, padsec=20, ktaper=zcross
 INSCOR, period= 0.037,damping=0.6, hitbeg=50,hitend=100
 DECIM, ndense = 3 ! << only for densely digitized data
 LOCUT(f), corner=0.1, nroll=1
 AVD(f),
 FAS(p),
 RESPON(p)
 DONE

The ampersand works fine as long as the user is typing the BAP command directly
in response to the operating system prompt, but it does not work well on PC/DOS
machines when the BAP command is placed in a .bat file that will be executed later.
The user's terminal rather than the .bat file is DOS's standard input stream, so one
cannot place an entire, continued, command line in a .bat file. (This is not a
problem on VAX/VMS machines, because VMS treats an "indirect command file" as
the standard input stream when executing commands in that file.)

 Another limitation on PCs is that the DOS command line cannot be longer than
128 characters. The limited command-line length and the inability to read &-
continued lines conveniently from within a .bat file means that users who wish to
invoke BAP from within .bat files on a PC will need to use @-files on their BAP
command lines when all required run-parameter settings will not fit within 128
characters. BAP can be directed to read its run parameters from disk files that
contain BAP run parameters by indicating the names of those files on the BAP
command line, with each such file name prefaced with an "@" character. Note the
third and forth examples shown in the last Section, for example:

 $|> bap @doit.brp
 $|> bap tsdata.smc, @smc.brp, corner=0.13

 Note that a trailing & at the end of a command line is merely an abbreviated
version of the @ usage: the trailing & is equivalent to @sys$input on a VAX;
equivalent to @con: on a PC. Note also that the trailing & requires that the user
type "DONE" as the last parameter. The "DONE" indicates that all the run parameters
have been provided and that BAP should proceed with the requested processing.
The "DONE" is not required unless the command line is continued with the trailing
&, for the end of the command line (without trailing &) is a sufficient end-of-run-
parameters indicator.

 page 4-4 BAP
 Run Parameters 01mar92

Version 1.0

4.3 Default Run Parameter Settings

 The default run parameter values are listed below. The list was generated with
a BAP show command. Although the list was generated as output from one BAP
command, it could be used as input to another BAP command. (One would
normally want to change some of the default parameter values, however: feeding
BAP a list of its default run parameter values wouldn't accomplish anything.)

 !
 ! Step names and their associated parameters:
 !
 INPUT
 infile= noname.xxx, infmt= *, motion?= ???, motion= *
 convert= 1.00
 nointerp
 spsin?= 200., spsin= *, spsnew= 200.
 nolincor
 vline= 0.00, mllsqf= off, mmean= off, beglin= *
 endlin= *, begfit= *, endfit= *, tapfit= 0.00
 nopad
 padsec= *, ktaper= zcross, tapsec= 0.20, jpad= 5
 noinscor
 period?= *, period= *, damping?= *, damping= *
 nohicut
 hitbeg?= 15.0, hitbeg= *, hitend?= 20.0, hitend= *
 nodecim
 ndense= 1
 nolocut
 corner?= *, corner= *, nroll?= 1, nroll= *, locut2= off
 noavd
 velfit= off
 nofas
 nsmooth= 1
 norespon
 sdamp= 0.00, 0.020, 0.050, 0.100, 0.20
 sper= 0.050, 0.100, 0.20, 0.50, 1.00, 2.00, 5.00, 10.0,
 15.0
 sdper= 0.0050, 0.0100, 0.020, 0.050, 0.100, 0.20, 0.50,
 1.00
 cliprs= on
 !
 ! output parameters:
 !
 outfmt= BBF, outdir= [], idc= BAP, warn= stop, SHOW= ON
 pltlbl= *
 !
 ! End of run parameter list.
 !
 done

 There is no need for the user to provide as lengthy a run parameters list as is
shown above, however, for only those parameters that the user wishes to be different
than the defaults need to be specified. The run parameters list for the first sample
BAP run shown in Appendix B, for example, is much shorter than the default list:

 idc=g1, gilroy21.smc, INPUT(f), PAD, INSCOR,
 LOCUT(f), AVD(f), FAS(p), RESPON(p)

The run parameter specifications can be even shorter in situations where only a few
processing steps are to be performed. For example, the run parameters list
requesting just the RESPON step can be quite short if the default damping and
period lists are to be used, as in:

 bapacc.bbf, respon(f,p)

 BAP page 4-5
 01mar92 Run Parameters

Version 1.0

4.4 Run Parameter Assignment Statements

 BAP run parameters are given in a comma-separated list of statements in the
form:

 processing-step-name (example: locut)
or processing-step-name(p) (example: locut(p))
or processing-step-name(f) (example: locut(f))
or processing-step-name(f,p) (example: locut(f,p))
or NOprocessing-step-name (example: NOlocut)

 parameter-name = parameter-value
 (example: outfmt=smc)
 on/off-parameter-name (example: show or show=on)
or on/off-parameter-name = on
or NOon/off-parameter-name (example: NOshow or show=off)
or on/off-parameter-name = off

 Each processing-step name may be followed with parentheses containing a "p"
and/or an "f" to indicate that the results of the processing step should be plotted
("p") or written to an output file ("f").

 The ! character is a comment delimiter. Any characters between a ! and the
end of line will be ignored by the BAP command-line interpreter.

 The * character can be used as the value in some assignment statements to
indicate that BAP should choose the value. For instance, infmt=* indicates that
BAP should attempt to determine the input data file format for itself.

 There is no significance to upper or lower case characters in the run-parameters
list. The examples in this report often show step names in upper case and parameter
names in lower case, but that distinction is not required.

 Some of the run parameters take more than one value. The padsec, ktaper,
and tapsec parameters are each two elements long (one for each end of the time
series); sdamp, sper, and sdper can be up to 200 elements long; and pltlbl can
be up to 20 elements long. All elements of one of these indexed parameters can be
set to the same value with a single assignment statement. For example,
padsec=8.5 is equivalent to padsec(1)=8.5, padsec(2)=8.5. Several
elements of one of the indexed parameters can be set without intervening
parameter-name= indicators. For instance, padsec=8.5, 9.2 is equivalent to
padsec(1)=8.5, padsec(2)=9.2. Note that individual elements of a parameter
that may take several values are indicated with the element number in parentheses
following the parameter name.

 Values to be assigned to the pltlbl parameter, which are character strings
that will be used as plot labels, should be enclosed in quotes if they include blanks.
The assignment statement pltlbl(1)= "the quick brown fox" sets
pltlbl(1) to the string the quick brown fox; but the statement
pltlbl(1)= the quick brown fox sets pltlbl(1)= the, pltlbl(2)=

 page 4-6 BAP
 Run Parameters 01mar92

Version 1.0

quick, pltlbl(3)= brown, and pltlbl(4)= fox. The entire string, including
the beginning and the ending quote characters, must be given on a single line.

 The infile parameter, which indicates the name of the input time-series file,
is unique among the run parameters in that its value can be specified by giving just
the file name without the infile= part of the assignment statement. For example,
$|> bap mydata.smc is equivalent to $|> bap infile=mydata.smc. This
short form can be useful when one wishes to fit all the required run parameters on a
limited-length command line without resorting to using an @-file.

 The order in which run parameters are given has no significance except that:

• When several assignment statements are given for the same parameter or step
name, the last is the one to take effect.

• When used, the abbreviated form of the infile parameter assignment (where

the "infile=" is omitted) is best given as the first parameter in the list. The
command-line interpreter will be confused if a file name without the infile=
follows an assignment statement for an indexed parameter. The interpreter must
encounter the name of another parameter after assigning a value to an indexed
parameter before it will stop assigning values to the indexed parameter. For
instance, pltlbl(3)= "title stuff", mydata.smc will assign
"mydata.smc" to pltlbl(4) rather than to infile. The easiest way to
avoid this problem is to maintain the habit of providing the input file name as
the first of the run parameters, or of supplying the infile= part of the
assignment.

4.5 Processing Step Names in Run Parameter Lists

 The processing step names are:

 INPUT get the input time-series,
 INTERP interpolate,
 LINCOR apply a linear correction,
 PAD pad the time series with leading and trailing zeros,
 INSCOR apply instrument correction,
 HICUT apply high-cut filter,
 DECIM reduce the sampling rate by retaining the just the first sample

of every n samples,
 LOCUT apply low-cut filter,
 AVD calculate velocity and displacement from acceleration or

calculate acceleration and displacement from velocity,
 FAS calculate Fourier amplitude spectrum, and
 RESPON calculate response spectra.

 By default, only the INPUT step is performed and the other steps are set to
NOstep-name. The user must name whatever other steps should be performed on
the BAP command line or @-file. Each step name may be followed with parentheses
containing "p", and/or an "f" to indicate that the results of the processing step (time
series, Fourier amplitude spectrum, or response spectra) should be plotted or
written to an output file.

 Plots are sometimes generated by default even if the user does not request them
explicitly.

 BAP page 4-7
 01mar92 Run Parameters

Version 1.0

• A plot of the input file is made if no processing steps are requested.

• A plot of the results from the FAS and RESPON steps will be made if user

requests FAS or RESPON without indicating whether a plot or an output file is
required. (There's no point in doing either step if no output is to be generated.)

 In most cases, the user must specify which of the processing steps should be
performed, but in some situations, BAP will perform some steps even if the user
explicitly requests that the step not be performed.

• The INPUT step will be performed whenever an infile is specified, even if

user inadvertently specifies NOinput.

• The INTERP step will be performed whenever spsin (the input sample rate)

is not the same as spsnew (the requested output sample rate), even if user
inadvertently specifies NOinterp.

• The PAD step will be performed whenever the HICUT or LOCUT steps are

requested, even if the user inadvertently specifies NOpad. If user genuinely
wishes to omit the padding, padsec should be set to 0.0.

• The HICUT step will be performed along with INSCOR whenever the INSCOR

step is requested, even if the user explicitly requests NOhicut.

4.6 Parameter Names and Assignment Values

 Most processing steps require run-parameter values acquired from the user's
command line or @-files, from the auxiliary (or "header") section of the input time-
series data file, or from the default values provided by the BAP software. The
parameters required for each step are described in detail in this Section.

 Those run parameters that can be acquired either from the user's run-parameter
list or from the auxiliary section of the input time-series file can be specified with
either of two names in the user's run-parameter list. The names are identical except
for an "?" character at the end of one of the names (e.g., spsin and spsin?). A
value assigned to the simpler form of a parameter name (e.g., spsin=200)
overrides any corresponding values found in the input time-series file. A value
assigned to the second form of a parameter name (e.g., spsin?=200) is used only
if no value for the parameter is found in the input file and no value is given for the
simpler form of the name.

INPUT-related parameters:
 infile = name of the input time-series file. The infile value may

include disk and directory identification, also known as a
"path". A PC/DOS example:

 infile= c:\scratch\qwerty\zonk\mydata.smc
 A VAX/VMS example:
 infile= pub1:[scratch.qwerty.zonk]mydata.smc
 By default, infile= noname.xxx.
 infmt = bbf, smc, or * to indicate the format of the input time-

series data file. By default, infmt=* to indicate that BAP
should inspect the input file to determine what format it is
in. When infmt=*, BAP first attempts to read the data file
in BBF format, and if the BBF attempt fails, BAP then
attempts to read the data in SMC format. Consequently, it

 page 4-8 BAP
 Run Parameters 01mar92

Version 1.0

 takes longer for BAP to process an SMC-format file when
infmt=* than it does when infmt=smc. Refer to Chapter
3 for a brief description of the BBF and SMC file formats.
Refer to the \agram\docs\smcfmt.doc and
bbffmt.doc files included among the BAP distribution
files for more detail about the file formats.

 BBF-format files can be exchanged between PCs and
VAXes even though the two machines represent floating-
point numbers in slightly different ways. PC-BAP will
recognize VAX floating-point numbers in its input BBF files,
and VAX-BAP will recognize PC floating-point numbers in
its input BBF files.

 motion? = acc, vel, dis, or ??? to indicate the type of motion
represented by the time series. A value assigned to
motion? will be used only if the information is not
provided in the input time-series file. By default,
motion?= ??? to indicate that the type of motion is
unknown, but should be treated as though it were
acceleration. The only difference between motion=???
and motion=acc is in the way BAP will label the plots.

 motion = acc, vel, dis, ???, or * to indicate whether or not the
type of motion indicated in the input time-series file should
be overridden by the value given for motion. By default,
motion=* to indicate that type-of-motion should be taken
from the input file. Should there be no such indication on
the file, then motion=motion?.

 convert = a conversion factor to be applied to each input time-series
sample to convert to units of cm/sec/sec, or if the input is
velocity rather than acceleration, to cm/sec. By default,
convert= 1.0.

INTERP-related parameters:
 spsin? = sampling rate to be used if there is no sampling rate

indicated in the input time-series file. Units= samples per
second. By default, spsin?= 200.

 spsin = * or the sampling rate to be used in place of that given in
the input time-series file. By default, spsin=* to indicate
that the sampling rate should be taken from the input file or,
should there be no sampling rate on the file, from spsin?.

 spsnew = sampling rate requested for the time series after
interpolation (if any) and before decimation (if any). By
default, spsnew=spsin unless the input time series is
unevenly sampled, in which case the default spsnew=200.

LINCOR-related parameters:
 mllsqf = on if the linear least-squares fit to the time series at and

between begfit and endfit should be subtracted from
the section of the time series at and between beglin and
endlin. By default, mllsqf= off.

 mmean = on if the mean value of the time series at and between
begfit and endfit should be subtracted from the
section of the time series at and between beglin and
endlin. By default, mmean= off.

 BAP page 4-9
 01mar92 Run Parameters

Version 1.0

 vline = a constant that should be subtracted from every sample in
the time series that occurs at and between beglin and
endlin. By default, vline= 0.0.

 beglin = * or the time of the first sample from which the correcting
line should be subtracted. By default, beglin=* to
indicate that the first sample in the time series should be the
first point in the linear correction.

 endlin = * or the time of the last sample from which the correcting
line should be subtracted. By default, endlin=* to
indicate that the last sample in the time series should be the
last point in the linear correction.

 begfit = * or the time of the first sample to be involved in the
calculation of the correcting line to be subtracted from the
time series. By default, begfit=* to indicate that the first
sample in the time series should be the first point involved
in the calculation. The correcting line will be the linear least-
squares fit or mean value of the time series between begfit
and endfit.

 endfit = * or the time of the last sample to be involved in the
calculation of the correcting line to be subtracted from the
time series. By default, endfit=* to indicate that the last
sample in the time series should be the last point involved in
the calculation.

 tapfit = the fraction of the fit range, begfit to endfit, in which a
cosine-tapered weighting factor is applied. The taper is
applied to both ends of the fit range. Tapfit must be
between 0.0 and 0.5. By default, tapfit= 0.0.

 Only one linear correction option will be performed even if more than one is

requested. Mllsqf=on takes precedence over mmean=on and mmean takes
precedence over vline=#. By default, mllsqf=off, mmean=off and
vline=0.0; this is equivalent to NOlincor.

PAD-related parameters:
 padsec(1) = length of the leading pad area, in seconds.
 padsec(2) = length of the trailing pad area, in seconds. By default,

padsec(1) =padsec(2) =*, the * indicating that BAP
should calculate the pad lengths based on the LOCUT filter
parameters, corner and nroll. Refer to Chapter 2,
Section 2.4.

 ktaper(1)&(2)= tapering option used to smooth the discontinuity (if such
exists) between the recorded samples and the pad.
Ktaper(1) refers to the beginning of the time series and
ktaper(2) refers to the end of the time series.

 = on to request that a tapsec-second long section of the time
series at the beginning or end of the recorded samples
be multiplied by a cosine half-bell taper positioned with
the zero point in the taper at the first point in the pad,
or

 = off, or
 =zcross to request that time-series samples before the first

zero crossing or after the last zero crossing be reset to
zero.

 By default, ktaper=zcross.

 page 4-10 BAP
 Run Parameters 01mar92

Version 1.0

 tapsec(1)&(2)= taper length used when ktaper=on. Given as number of

seconds in the taper. By default, tapsec= 0.2.
 jpad = a test and development parameter that should rarely be used

with other than its default value of 5. Jpad= 0 to 5 to
indicate the padding sequence: whether to do the padding
before the HICUT filter or before the LOCUT filter, and
whether to include the trailing pad required by the FAS
step in the pre-filter pads. Pad lengths required by the
LOCUT filter are much larger than those required by the
HICUT filter, so BAP usually does the padding in several
steps, in accordance with the default jpad=5 sequence.
Short, two-second, pads are added before the
INSCOR+HICUT step, the pads are extended (to tapsec
seconds) before the LOCUT step, then the trailing pad is
extended again (to 2n samples) before the FAS step.

 jpad=0: all the padding is added before the INSCOR step. If
the FAS step has been requested, the trailing pad is extended
so the total number of samples in the padded time series will
be an integral power of 2.

 ∙ Problem: the 2n samples required for the FAS step
impose an unacceptably long time series on all the other
processing steps, especially if the time series is going to
be decimated after INSCOR, before FAS.

 jpad=1 is similar to jpad=0, except that the FAS-required
padding out to 2n samples is not performed before the
INSCOR step, but is added later, during the FAS step itself.

 ∙ Problem: the time series is still unnecessarily long
during the time-consuming INSCOR+HICUT step.
INSCOR+HICUT crunches along on a zero-valued time
series for most of its effort.

 jpad=2: the padding is added before the LOCUT step rather
than before the INSCOR step. FAS-required padding is
included if the FAS step is requested.

 jpad=3 is similar to jpad=2, except that the FAS-required
padding is added later, during the FAS step itself.

 ∙ Problem: tiny filter transients result from the HICUT
filter applied with the INSCOR step. Although these
transients are much less significant than the transients
from the low-cut filter step, they should be included in
subsequent processing. The more serious problem with
the jpad=2 or 3 method, however, occurs when the
input time series begins or ends with a value
significantly different than zero. INSCOR+HICUT
proceeds as though the time series has zero values
before and after the input samples, so there is a sharp
step in the series where the hypothetical zero-valued
samples and the input samples meet (if the input
samples do not begin and end near zero). That sharp
step produces spurious high frequencies in the filtered
time series. The ktaper = on or zcross option
needs to be applied before the INSCOR+HICUT process
to diminish the effects of such a step.

 jpad=4: short two-second pads are added before the INSCOR
step, then the pads are extended (to tapsec seconds)

 BAP page 4-11
 01mar92 Run Parameters

Version 1.0

 before the LOCUT step and the trailing pad is extended again
(to 2n samples) before the FAS step.

 jpad=5 is equivalent to jpad=4 when the HICUT filter is
performed; equivalent to jpad=3 otherwise. jpad=5 has
the same effect as jpad=4, the only difference being that a
diagnostic message is suppressed when jpad=5 and either
or both of the filters are not requested.

INSCOR-related parameters:
 period or period? = period of the recording transducer, in seconds.

(Transducer periods for SMA recorders are usually between
0.05 and 0.04 seconds.)

 Period indicates a value to be used regardless of any
period values given in the input time-series file; period?
indicates the value to be used if there is no transducer period
given in the file and no value assigned to period. By
default, both period and period? are set to *.
Period=* indicates that the transducer period value
should be retrieved from the input file or, should there be no
transducer period on the file, from period?; while
period?=* indicates that if INSCOR is requested and no
value is assigned to period and no period value is given in
the input file, then BAP should write a diagnostic informing
the user that an appropriate period value is required.

 damping or damping? =damping of the the recording transducer as a fraction
of critical damping. (Transducer damping fractions for SMA
recorders are usually about 0.6.)

 Damping and damping? are treated similarly to period
and period?; both have default values of *.

HICUT-related parameters:
 hitbeg or hitbeg? = the beginning of the transition band to be used in the

high-cut filter. Hitbeg is the end of the pass band: the
frequency at which the cosine taper begins.

 hitend or hitend? = the end of the high-cut filter transition band. Hitend
is the beginning of the filter's stop band: the frequency at
which the cosine taper ends.

 By default, hitbeg? and hitend? are 50 and 100 Hz, respectively, for BBF-

format files and for SMC-format files that indicate a data source of "USGS"; 15
and 20 Hz otherwise.

DECIM-related parameters:
 ndense = ratio of the dense sample rate to the after-decimation sample

rate. The decimation step removes all but the first of every
ndense samples. By default ndense=1, which is
equivalent to NOdecim.

LOCUT-related parameters:
 corner or corner? = corner frequency for the low-cut, bidirectional

Butterworth filter. (Values for corner are usually between
0.5 and 0.2.) By default, corner=* and corner?= *.

 page 4-12 BAP
 Run Parameters 01mar92

Version 1.0

nroll or nroll? = roll-off parameter for the low-cut, bidirectional Butterworth
filter. 1 ≤ nroll ≤ 11. By default, nroll=* and
nroll?= 1.

 locut2 = off by default. Locut2=on is a rarely-used option whose
purpose is to reproduce one of the processing options
provided by another program (CORAVD) used at the USGS.
When locut2=on, the LOCUT filter is applied to two time
series, acceleration and velocity, rather than just to the
acceleration as is normally the case. The acceleration is
integrated to a first estimate velocity before the LOCUT step,
the LOCUT filter is then applied to acceleration and velocity
separately, then the filtered velocity is integrated to
displacement.

 Refer to Sections 2.8 and 5.3 through 5.6 for more information about corner,

nroll, and the LOCUT filter.

AVD-related parameters:
 velfit = on to request a linear correction to velocity and acceleration

before the velocity is integrated to displacement.
Velfit=off by default. Velfit=on is a rarely-used
option that should only be applied to accurately recorded,
accurately digitized records for which no LOCUT filter is
required. The velfit process subtracts a fitted line from
the velocity and subtracts a constant, equal to the slope of
the line, from the acceleration. The velocity is then
integrated to displacement. The fitted line is the linear least-
squares fit to the velocity between begfit and endfit,
the same two parameters used to indicate the fit range in the
LINCOR step. The tapfit parameter also applies to the
velfit correction as it does in the LINCOR correction, but
the beglin and endlin parameters apply only to the
LINCOR correction.

 Note that velfit=on requires that LOCUT=off (that's

equivalent to NOlocut), padsec=0.0 (i.e., no padding),
and that the input is acceleration, not velocity. Although the
time series should not be extended with zero padding
(padsec=0.0) when velfit=on, the taper that is
normally applied in the padding step might be required to
arrange that the time series begins and ends near zero. To
apply the taper (ktaper=on or ktaper=zcross) without
padding, set the PAD step on with a zero-length pad: PAD,
padsec=0.0, ktaper=on. It would have been more
logical, in this case, if BAP had been designed with the
tapering function as a separate step rather than as a feature
of the PAD step.

FAS-related parameters:
 nsmooth = number of points to be used in a weighted running-mean

applied to the squared Fourier amplitude spectrum. By
default, nsmooth=1 to indicate that no smoothing is
required. When nsmooth>2, the weighting function has
the shape of an isosceles triangle and is applied with its apex

 BAP page 4-13
 01mar92 Run Parameters

Version 1.0

at the point to be re-evaluated. The weighting function has
an odd number of points, so if nsmooth is given as an even
number, nsmooth-1 points will be used in the weighting
function.

RESPON-related parameters:
 sdamp() = a list of damping values. A response spectrum curve will be

calculated for each damping value given in the sdamp list.
By default, sdamp= 0.0, 0.02, 0.05, 0.1, 0.2.
Units = fraction of critical damping.

 sper() = a list of period values that will be used as abscissae in the
response spectra. Additional points between each value
given in the sdper list may be indicated in the sdper list.
By default, sper= 0.05, 0.1, 0.2, 0.5, 1.0, 2.0,
5.0, 10.0, 15.0. Units = seconds.

 sdper() = a list of period increments to be used between each period
given in the sper list. The abscissae in the response
spectra between sper(i) and sper(i+1) will be
sdper(i) seconds apart. By default, sdper= 0.005,
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0.

 cliprs = on to "clip" (or remove) that section of the response spectra
curves that extend below the period range where BAP
response spectra calculations are accurate (periods below ten
times the sampling interval of the time series). Refer to
Chapter 5, Section 5.8 for discussion of cliprs and BAP-
calclulated response spectra. By default, cliprs=on, the
cliprs=off setting is meant only for use in test situations.

Output parameters:
 outfmt = bbf or smc to indicate the output time series file format.

By default, outfmt=bbf.
 outdir = the directory (or "path" as its called in PC jargon) to contain

all the output files: the run messages file (baprun.msg), the
plot description file (bapplots.aps), and any data files
requested.

 a DOS example:
 outdir=c:\scratch\qwerty\zonk\
 a VMS example:
 outdir=pub1:[scratch.qwerty.zonk]
 By default, outdir= [], the local directory. Note that

BAP will accept "[]" as meaning "local directory" on a PC,
even though the "[]" is not part of the DOS file name
conventions as it is in the VAX/VMS file name conventions.

 idc = a run identifier to be shown on the output plot pages and
used as the first few characters of each output file name. By
default, idc=bap on VAX/VMS computers, =bp on
PC/DOS computers. On PC/DOS computers, the portion of
idc used in file names is limited to 2 characters, due to the
8-character limit on DOS file names.

 warn = stop, bells, or msg to indicate whether or not processing
should proceed after a warning diagnostic message is
printed. By default, warn=stop to indicate that the
program should stop after printing any warning diagnostic.
When warn=bells, the program will sound a warning

 page 4-14 BAP
 Run Parameters 01mar92

Version 1.0

when a warning message is printed, then proceed with
processing. When warn=msg, the processing will proceed
without the warning bells after a warning message is
printed. When warn=bells or warn=msg, the user must
take care to read the run messages file and check for
warnings before trusting the results. These warnings will
show three asterisks (***) in the left-hand margin of the run
messages file.

 show = on or off to indicate whether or not BAP should display
the current value of all run parameters. By default,
show=off when the input file name is given in the
abbreviated form (without the infile=) and show=on
otherwise. The display will show the run parameters that
retain their default values with lower case names, and run
parameters that have been reset with uppercase names.

Plot parameters:
 There is only one plot parameter, pltlbl, in the present version BAP. There is

no flexibility in the way the plots are arranged in this version, but matters
should improve in future versions. For more control over the appearance of the
plots, use the TSPLOT (time series plotter) and FASPLOT (Fourier amplitude
plotter) programs with .bbf files generated in BAP. See Chapters 6 and 7 for a
discussion of TSPLOT, FASPLOT, and other plotting functions.

 pltlbl() = a label that will be plotted at the top of all the plots. By

default, pltlbl="< no PLTLBL given>" and is not
shown on the plots.

 Each element of pltlbl represents a separate line of text.

Each line of text should be enclosed in quotes if it includes
any blanks. And each line of text, including the beginning
and ending quote characters, must be given on a single input
line. For example, pltlbl(1) through (4) could be
given as follows:

 pltlbl ="this is the first line"
 "second line", "third line",
 "and this is the 4th and last line."

End of run parameters flag:
 done This signals the end of the run parameters. The done is

often unnecessary, because the end of the command line
(without an &) is normally a sufficient end-of-run-
parameters indicator.

 BAP page 4-15
 01mar92 Run Parameters

Version 1.0

**** add later, maybe:
--- was in 4.4:
Characters between a /* and */ are also comments that will be ignored by the
command-line interpreter.

---- was in the plot parameters section:
 The plot parameters will probably include:
 tspbeg = time at which time-series plots should begin, or
 = * to indicate the time of the first sample in the time series.

By default, tspbeg=*.
 tspend = time at which time-series plots should begin, or
 = * to indicate the time of the first sample in the time series.

By default, tspend=*.
 tspspp = number of seconds to show on each plot page. By default,

tspspp=*.
 pltpad = on or off to indicate whether or not the leading and

trailing pads should be shown in the time-series plots. By
default, pltpad=on

 pltdots = on or off to indicate whether or not each plotted point
should be marked with a little circle. Pltdots=on will
only take effect in time-series plots and only when tspbeg
and tspend are close enough, or tspspp is small enough,
that there are less than 200 samples on the plot page. By
default, pltdots= off

 aaxmax = minimum value for the acceleration axis. By default,
aaxmax=*

 aaxmin = maximum value for the acceleration axis. By default,
aaxmin=*

 vaxmax = minimum value for the velocity axis. By default, vaxmax=*
 vaxmin = maximum value for the velocity axis. By default, vaxmin=*
 daxmax = minimum value for the displacement axis. By default,

daxmax=*
 daxmin = maximum value for the displacement axis. By default,

daxmin=*
 faxmax = minimum value for the Fourier amplitude axis. By default,

faxmax=*
 faxmin = maximum value for the Fourier amplitude axis. By default,

faxmin=*
 raxmax = minimum value for the pseudo-velocity response axis. By

default, raxmax=*
 raxmin = maximum value for the pseudo-velocity response axis. By

default, raxmin=*

 BAP page 5-1
 01mar92 Guidelines

Version 1.0

Chapter 5

Guidelines for Selecting BAP Run Parameters

 To process an uncorrected time series file from the Strong-Motion CD-ROM1,
one could use the following BAP command:

 $|>2 BAP idc=xx, tsdata.smc, &
 INSCOR, PAD, LOCUT(f), AVD(f), FAS(p), RESPON(p), DONE

In this example, the input file is named tsdata.smc, and could be a copy of any
time-series data file from the Strong-Motion CD-ROM (these time series are
uncorrected, but equispaced). Several important run parameters (period,
damping, hitbeg, hitend, and corner) are not specified in this example, so
the BAP software would attempt to retrieve appropriate values from the header area
of the input time-series file. If values for the period, damping, or corner
parameters were missing or "undefined" in the input file, BAP would issue a message
to the user and stop. If values for the hitbeg and hitend parameters were
missing or "undefined" in the input file, BAP would assign default values that the
user might want to override (see Section 5.2). When the program stops with a
request for user-supplied values for one or more of these parameters, the user will
need to add the missing information to the run-parameters list and rerun the
program, as in:

 $|> BAP idc=xx, tsdata.smc, &
 INSCOR, period=0.05, damping=0.6, hitbeg=50, hitend=100
 PAD, LOCUT(f), corner=0.12,
 AVD(f), FAS(p), RESPON(p), DONE

The required information is often available from the references indicated in the
comments section of the SMC data file. The period and damping values should
be obtained from the information about the recording instrument, the hitbeg and
hitend values from information about the digitizing machine (specifically its
sampling rate) and estimates of the highest frequency of interest visible in the record,

1 Reference [20], by Seekins and others.
2 In most of the examples in this report, "$|>" is used to represent the prompt from a

generic operating system. The prompt is occasionally shown as "vax$" or "dos>" to
indicate a specific operating system. Step names, like INSCOR and LOCUT, are
usually shown in upper case, while parameter names, like damping and hitbeg,
are usually shown in lower case, but step names and run parameter names are not
case-sensitive.

 Page 5-2 BAP
 Guidelines 01mar92

Version 1.0

and the corner value from an estimate of the lowest frequency above which there
is no low-frequency noise in the time series.

 The user will need to provide the period, damping, hitbeg, hitend,
and corner values, as shown in the second example above, when these values are
not included in the time-series file. The period, damping, hitbeg, hitend,
and corner values are often included in files that come from the Strong-Motion
CD-ROM, but they are usually not included within the blocked-binary time series
files used at the USGS.

 When processing BBF-format files containing uncorrected and unevenly-
sampled time series digitized by the automatic trace-following digitizer employed by
the USGS, the user should also request that each time series be interpolated to 600
samples per second initially and decimated to 200 samples per second after the
instrument correction step. This can be done as follows:

 $|> BAP idc=xx, tsdata.bbf, &
 INTERP, spsnew = 600 ! <<<
 INSCOR, period=0.05, damping=0.6, hitbeg=50, hitend=100
 DECIM, ndense=3 ! <<<
 PAD, LOCUT(f), corner=0.12,
 AVD(f), FAS(p), RESPON(p), DONE

The interpolation and decimation steps are appropriate for these time series because
they are digitized at approximately 600 samples per second, in contrast time series
from the Strong-Motion CD-ROM, which have already been interpolated to 200
samples per second or less. The sampling rate of 600 sps is used during the the
instrument correction step with these time series so the derivatives calculated in that
step will be as accurate as the input data will allow.

 In actual practice, an uncorrected time series is often processed with two or
more passes though BAP. For the first pass, the run parameters list usually requests
that the time series be processed though the INPUT, INSCOR, HICUT, AVD, and
FAS steps. (And, as mentioned above, the INTERP and DECIM steps are added to
the list for the unevenly-sampled and densely digitized time series produced by the
laser digitizer employed by the USGS.) After inspecting the acceleration, velocity,
and displacement plots from the AVD step and the Fourier amplitude spectrum plot
from the FAS step, the user can decide whether or not a LOCUT filter is required. If
the LOCUT filter is required, as is usually the case, the PAD and LOCUT steps can
be added to the run parameters list; then BAP may be rerun several times, with the
user adjusting the LOCUT filter parameters (corner and nroll) and/or the pad
lengths (padsec) each time. Once appropriate settings for the LOCUT and PAD
parameters are determined, the acceleration time-series resulting from the LOCUT
step (or from the AVD step if the uncorrected time series measured velocity rather
than acceleration) can be passed to the RESPON response-spectra calculating step.
To do so, BAP might be rerun with the same run parameters list as before, but with a
RESPON request added, or BAP could be run with a new run parameters list that
contained nothing but a RESPON request, with the corrected, filtered acceleration
generated in the previous BAP run given as the input file. The second method would
save computer time, but is usually less convenient for the user. The second method
also requires that the intermediate file (the input file for the RESPON-only run) be in
BBF format so the leading and trailing pads could be passed from one BAP run to the
other. (The SMC-format files do not include leading or trailing pads that are usually
appended to the time series during BAP processing.) The RESPON step takes

 BAP page 5-3
 01mar92 Guidelines

Version 1.0

 significantly longer than any of the other steps, so it is usually not requested in
preliminary BAP runs.

 The BAP processing steps are applied in a fixed, predetermined sequence within
the program. In special cases where a different sequence is required, the user can
request an output BBF-format time-series file from one step, then use the resulting
output file as an input file to another BAP run. The ability to reintroduce BAP
output files as BAP input files should be used with caution, however. It requires that
users keep track of what processing steps have been applied to any given time series
and that they beware against processing in a nonsensical order or redoing steps that
have already been applied. For example, users must beware against distorting a time
series by instrument correcting or filtering one that has already been instrument
corrected or filtered in an earlier BAP run (or in other previous processing).

5.1 Interplolation, Decimation, and Alias Errors
 The INTERPolation and DECIMation steps can be used, in conjunction with the
HICUT filter, to change the sampling rate of the input time series. The INTERP step
linearly interpolates between adjacent samples in the input time series to generate
samples at the requested sampling interval (spsnew). It will change an unevenly-
sampled input time series, whose samples are represented as a series of coordinate
pairs, to an evenly-sampled series, whose samples are represented as a series of
single-valued abscissae; or it will increase the sampling rate of an evenly-sampled
input time series by an integral factor (spsnew/spsin). The DECIMation step will
reduce the sampling rate by an integral factor (ndense).

 The INTERP step is intended primarily for resampling an unevenly-sampled
input time series to an evenly-sampled time series. This step is required for such an
input series because all the subsequent processing steps require that the time series
be evenly sampled. When choosing a constant sampling interval for an unevenly-
sampled input time series, the sampling interval for the new series (spsnew) should
approximate the average, or most prominent, sampling rate of the uninterpolated
series. During routine processing at the USGS, the input time series are usually
digitized at approximately 600 samples per second; INTERpolated to a constant 600
sps, HICUT-filtered with a transition band at 50 to 100 Hz (along with the INSCOR
step); then DECIMated to 200 samples per second. The denser sampling rate is used
during the INSCOR step so that the derivatives required in the INSCOR step can be
calculated as accurately as the data will allow.

 The INTERPolation and DECIMation steps are not required for time series from
the Strong-Motion CD-ROM, as these time series are already evenly sampled at 200
sps or less.

 INTERPolation or DECIMation may be useful when processing evenly-sampled
input time series in some situations, however. INTERPolating to a higher sampling
rate does allow one to override a limitation in the RESPON step, for instance (see
Section 5.8). And DECIMation to a lower sampling rate can be used to increase
processing speed when the frequencies of interest are much lower than the Nyquist
frequency (spsin/2 Hz) of the original series. The INTERPolation and DECIMation
steps can introduce spurious frequencies into their resulting time series, however,
and either step should be complemented with an appropriate HICUT filter. The
HICUT step occurs after the INTERPolation step and before the DECIMation step.
After INTERPolation, the HICUT filter should remove frequencies above the

 Page 5-4 BAP
 Guidelines 01mar92

Version 1.0

 Nyquist frequency (=spsin/2 Hz) of the original series. Before DECIMation, the
HICUT filter should remove frequencies above the Nyquist frequency
(=spsnew/(2*ndense) Hz) of the decimated time series. The HICUT filter is
especially important before DECIMation. If the undecimated time series contains
oscillations with frequencies greater than the Nyquist or "folding" frequency of the
decimated time series, they will be "aliased" or "folded" back into the decimated time
series as though they were lower-frequency oscillations. The aliased oscillations will
be indistinguishable (on a plot from the FAS step, for example) from the original
oscillations at the lower frequencies.

5.2 Instrument Correction and High-Cut Filter Parameters

 The instrument-correcting procedure that is applied to a time series when the
INSCOR option is specified will not be required, or even be appropriate, for some
time series. The INSCOR step is appropriate only for acceleration records where the
signal is, or is analogous to, the output of a damped, spring-mass, single-degree-of-
freedom, optical-mechanical accelerometer (hereinafter referred to as a "spring-mass
accelerometer"), and is required only when high frequencies of interest in the records
lie close to, or higher than, the natural frequency of the accelerometer.

 The INSCOR algorithm is appropriate for the spring-mass accelerometers
typically used in analog strong-motion recorders such as the Kinemetrics "SMA-1",
the Teledyne "RFT-250", the United Electro Dynamics "AR-240", the New Zealand
"MO-2", and the U.S. Coast and Geodetic Survey "Standard" recorders. The
algorithm is also appropriate for force-balance accelerometers (FBA), such as those in
Kinnemetrics "DSA" recorders, that have been adjusted electronically to simulate the
character of a spring-mass accelerometer. The algorithm is not appropriate for
accelerometers whose frequency response does not correspond to that of a
pendulum. These include the FBA accelerometers used in many digital recorders,
such as the Kinnemetrics solid-state recorders and the USGS "GEOS" recorders.
Instrument correction is usually not required for such accelerometers, however, for
they generally have a flat response extending to frequencies higher than those of
interest. Most strong-motion accelerograph recordings, analog or digital, belong to
the spring-mass-accelerometer category, however, and the INSCOR process is
appropriate for them. The spring-mass-accelerometer instruments generally have a
natural frequency between 10 and 30 Hz and damping between 60% and 70% of
critical damping. (The frequency and damping of the recording instrument are
stored in the header area of time-series data files on the Strong-Motion CD-ROM.)

 Instrument correction may not be required even for spring-mass-accelerometer-
recorded time series, if the frequencies of interest are well below the natural
frequency of the transducer. The BAP/INSCOR instrument correction amplifies
frequencies in the time series that are close to the natural frequency of the recording
instrument and higher. The higher the frequency, the more the signal is amplified by
the instrument correction to compensate for the decrease in the response of this type
of recording instrument as frequency increases. If there is high-frequency noise in
the time series, however, it too will be amplified.

 By default, the high-cut filter that is applied along with the instrument
correction has its transition band at either 50 to 100 Hz or at 15 to 20 Hz. The 50-to-
100 Hz transition is usually appropriate for digitally-recorded records and for
records that were digitized by the automatic trace-following laser digitizer employed
by the USGS; the 15-to-20 Hz transition for manually digitized records. When no

 BAP page 5-5
 01mar92 Guidelines

Version 1.0

HICUT transition band is provided by the user (via hitbeg and hitend or
hitbeg? and hitend?) or indicated in the input file, BAP selects the transition
band as follows:

 ∙ 50 to 100 Hz for BBF-format files;
 ∙ 50 to 100 Hz for SMC-format files that indicate a data source of "USGS";
 ∙ 15 to 20 Hz in all other cases.

These defaults are not necessarily appropriate, however, and users should consider
whether more appropriate values should be used for each time series to be
processed. The 50-to-100 Hz transition will be too high for many records, as is
illustrated in Figures 5.2.a and 5.2.b; the 15-to-20 Hz transition will be unnecessarily
low for other records. Consequently, the user should either indicate the transition
band explicitly (by assigning values to hitbeg and hitend or to hitbeg? and
hitend?) or carefully consider whether the default provided by the software is
appropriate. To assist in this decision, it would be useful to inspect the original
record, or a plot of its digitized version, and actually measure the highest fequency
that is either (a) visible and measurable, or (b) of interest to the research project
initiating the processing. The user should assign the chosen frequency to hitbeg
and perhaps twice this frequency to hitend.

 The two curves shown in Figure 5.2.a illustrate the effect of the instrument
correction and high-cut filter applied to a densely-digitized time series that contains
spurious high-frequency noise. Both curves show the same one-second section of a
time series that was recorded during the 1983 Coalinga earthquake in the basement
of the Pleasant Valley pumping plant. The top curve shows the time series before
any processing, the bottom curve shows the same time series after the instrument
correction (INSCOR) and high-cut filter (HICUT) that are normally applied in
routine processing. In this case, however, the instrument correction only serves to
amplify the high-frequency noise in the time series. For this time series, it would
probably be best to forego the instrument correction and/or apply a high-cut filter
with a lower transition band than the 50 to 100 Hz that is used in routine processing.
The high frequencies (between 30 and 50 Hz) in the top curve (and amplified in the
bottom curve) might originate in several ways: from earthquake-induced vibrations
in equipment close to the recorder, from an unexpected higher-mode oscillation in
the mechanical transducer, or from an inability of the automatic trace-following
digitizer to cope with an unclear photographic trace. (In this case, it was probably
vibrations in nearby equipment.) Unless it can be verified that high-frequency
content like that shown in this example is in fact useful earthquake input, the high
frequencies should be filtered out.

 The time series shown in Figure 5.2.a was originally digitized with an automatic
trace-following laser digitizer that produces much more accurate results than can be
achieved with manual or semi-automatic digitization methods. Instrument
correction on hand-digitized records can lead to even more serious amplification of
high-frequency noise than is shown in Figure 5.2.a, as is illustrated in Figure 5.2.b.
The middle curve in Figure 5.2.b was generated by using a transition band
(hitbeg=50, hitend=100) for the high-cut filter that is appropriate for laser-
digitized records but clearly not appropriate for the hand-digitized record in this
example. By default, BAP would use the more appropriate 15 to 20 Hz transition
band for this data, resulting in the lower curve shown in Figure 5.2.b, but had the
software not recognized that it was dealing with a hand-digitized record, the 50 to
100 Hz transition might have been used by default, resulting in the clearly erroneous
middle curve shown in Figure 5.2.b. (This could occur, for instance, if the SMC-
format file had been converted to BBF-format, then input to BAP in BBF-form.)

 Page 5-6 BAP
 Guidelines 01mar92

Version 1.0

 The curves shown in Figure 5.2.b show a one-second section of a record taken
during the 1940 El Centro earthquake. Digitization was semi-automatic (the cross-
hair placement was manual), with an average sampling rate of only 18 samples per
second (the time series was then linearly interpolated to 200 sps before inclusion on
the CD-ROM). The record was digitized, as were almost all U.S. strong-motion
accelerograms up to and including the 1971 San Fernando earthquake, as part of the
CalTech "blue book" strong-motion project. (See Reference [20], by Seekins and
others, for a discussion of the original sources of the time-series on the CD-ROM.)
These digitizations can be relied on to include all high frequencies visible on the
original records: generally 10-15 Hz and very rarely as high as 20 Hz. But each high
amplitude peak and trough was often digitized as a single point. When the digitized
points were presumed, in subsequent processing, to be connected by straight lines,
spurious high frequencies were introduced. When those spurious high frequencies
are left in the time series (as some would be when hitbeg=50 and hitend=100)
and are amplified by the instrument correction procedure, exaggerated spikes such
as those shown in the middle curve of Figure 5.2.b will result.

Figure 5.2.a: One second of a noisy, densely-digitized record before (top curve)
 and after (bottom curve) the default BAP instrument correction
 and high-cut filter.

 BAP page 5-7
 01mar92 Guidelines

Version 1.0

 The commands used to generate the curves shown in Figure 5.2.a were:

 $|> bap idc=aa, pvb6.smc, input(f), padsec=0, &
 inscor(f), period=0.039, damping=0.6, hitbeg=50, hitend=100, done
 $|> ptsp aainout.bbf(43),aainscor.bbf(43),15,16,1, nopeak, &
 twoxax,axesonly,xmargin(0.07,0.999),ymargin(0.1,0.9), done
 $|> rename plots.aps fig52a.aps
 $|> print fig52a.aps

The commands used to generate the curves shown in Figure 5.2.b were:

 $|> bap idc=bb,elcen1.smc,input(f),padsec=0,inscor(f),hitbeg=50,hitend=100
 $|> bap idc=cc,elcen1.smc, ,padsec=0,inscor(f),hitbeg=15, hitend=20
 $|> ptsp bbinout.bbf(440),bbinscor.bbf(440),ccinscor.bbf(440), &
 9,10,1, nopeak, portrait
 twoxax,axesonly,xmargin(0.07,0.999),ymargin(0.1,0.9), done
 $|> rename plots.aps fig52b.aps
 $|> print fig52b.aps

Figure 5.2.b: One second of a hand-digitized record.
 Top curve: before instrument correction or high-cut filter.
 Middle curve: after instrument correction with high-cut transition
 at 50 to 100 Hz
 Bottom curve: after instrument correction with high-cut transition
 at 15 to 20 Hz

 Page 5-8 BAP
 Guidelines 01mar92

Version 1.0

(Software bug: each of the three BAP commands above include a padsec=0
statement. The padsec=0 is required only to arrange that the curves to be plotted
will all have the same start time. The current version of ptsp (a.k.a. TSPLOT) isn't
smart enough to synchronize a padded with an unpadded time series when plotting
a frame that doesn't show the beginning of the curves.)

 The time series shown in Figures 5.2.a and 5.2.b are available on the Strong-
Motion CD-ROM at \1983\122x42PV.P0f and \1940\139u37EL.C0a
respectively; the files are also distributed with the BAP distribution files as
\agram\testdata\pvb6.smc and elcen1.smc.

5.3 Pre-filter Pads

 Before applying the high-cut or low-cut filter, BAP pads the beginning and end
of the time series with a sequence of zeros. The user must verify that the zero pads
are of sufficient length by inspecting plots of the velocity and displacement curves
calculated from the padded, filtered acceleration. After either filter is applied, the
time series in the pad areas will no longer be zero, but will show small oscillations
that diminish as the distance from the recorded samples increases. When these filter
transients are included in the integration bounds in the AVD step, and when the
pads are long enough, the resulting velocity and displacement curves will begin and
end at zero.

 The plots in Figures 5.3.a and 5.3.b illustrate the effect of the low-cut filter on
two time series having pads of various lengths. The first time series is simply a two-
second zigzag (which is not representative of an earthquake wave and is full of high-
frequency components); wave forms that result from filtering and integrating this
time series are shown in Figure 5.3.a. The second time series is recorded data from
the Anderson Dam, downstream, recording site during the 1989 Loma Prieta
earthquake. Wave forms that result from processing this time series are shown in
Figure 5.3.b. There are four plot frames on each page and four curves in each plot
frame. The four plots in each frame show the input time series, the filtered time
series, the velocity calculated as the first integral of the filtered time series, and the
displacement calculated as the second integral of the filtered input time series. The
upper-left plot frame on each page shows the curves that result when no filter is
applied; the upper-right frame shows the curves that result when a filter without
padding is applied; the lower-left frame shows the results when the pads are too
short; and the lower-right frame shows the results when the pad lengths are
adequate.

 Only the low-cut filter was applied in these examples, because the effects of an
appropriately-placed high-cut filter would have no significance in plots shown at this
scale. The filter applied to the 2-second zigzag was placed with corner=0.75 Hz
so that most of the curve would be filtered away, leaving the peak value so small that
the filter transients are visible when the entire curve is shown. The roll-off
parameter, nroll, was set to 4 for the zigzag filter to exaggerate the filter
transients. The filter applied to the Anderson Dam time series was placed with
corner=0.1 Hz and nroll=1.

 BAP page 5-9
 01mar92 Guidelines

Version 1.0

Input time-series file =zigzag.smc. Filter corner=0.75, nroll=4.

The four plots in each frame above show the input time series (zigzag.smc), the
filtered time series (periods longer than 1.3 sec. removed), the velocity calculated as
the first integral of the filtered time series, and the displacement calculated as the
second integral of the filtered time series.

no filter, no pad

filter without pad

filter with insufficient (5-sec.) pads

filter with sufficient (8-sec.) pads

Figure 5.3.a

 Page 5-10 BAP
 Guidelines 01mar92

Version 1.0

Input time-series file =andds1.bbf. Filter corner=0.1, nroll=1.

The four plots in each frame above show the input time series (andds1.bbf), the
filtered time series (periods longer than 10 sec. removed), the velocity calculated as
the first integral of the filtered time series, and the displacement calculated as the
second integral of the filtered time series.

no filter, no pad

filter without pad

filter with insufficient (5-sec.) pads

filter with sufficient (20-sec.) pads

Figure 5.3.b

 BAP page 5-11
 01mar92 Guidelines

Version 1.0

 The time series shown in Figure 5.3.b is the same time series that is used as the
second example in Appendix B. The commands used to generate the curves in the

lower right-hand frame of Figure 5.3.b were:

 $|> bap idc=a4,andds1.bbf, &
 INPUT(f), PAD,padsec=20, LOCUT(f),corner=0.1, AVD(f), DONE
 $|> ptsp a4inout.bbf,a4acc.bbf,a4vel.bbf,a4dis.bbf, -20,60,80, &
 twoyax,twoxax,nopeak,rotate,notlbl, done
 $|> print plots.aps

All the plot frames in Figures 5.3.a and .b were generated with similar commands.
The above BAP command does not request instrument correction or related steps
because those procedures, which affect high frequencies, have no significance with
respect to the length of the pads required for the low-cut filter. (Pad lengths required
by the low-cut filter are very much larger than those required by the high-cut filter.)
The corresponding BAP command that does include INTERPolation to a denser
sampling rate than the default 200 sps, INSCOR (which includes HICUT), and
DECIMation is:

 $|> bap idc=a4, andds1.bbf, &
 INPUT(f)
 INTERP, spsnew=600 ! << only for densely-digitized data
 PAD, padsec=20, ktaper=zcross
 INSCOR, period=0.037, damping=0.60, hitbeg=50, hitend=100
 DECIM, ndense = 3 ! << only for densely-digitized data
 LOCUT(f), corner=0.1,nroll=1
 AVD(f), DONE

5.4 Tapers

 When an input time series that does not begin and end with amplitudes very
near zero is extended with leading and trailing zero pads, there will be spurious
sharp offsets in the padded time series where the recorded samples meet the pad
areas. Passing these offsets through the INSCOR processing step (which includes
the HICUT filter) will result in spurious high-frequency spikes.

 The tapering function, which is applied in the PADding process and which is
controlled by the ktaper and tapsec run parameters, is used to smooth a
discontinuity between recorded samples and the pad area. Ktaper(1) and (2)
may be set to "zcross", "on", or "off". (Ktaper(1) refers to the beginning of the
time series, ktaper(2) refers to the end, and ktaper without a subscript refers to
both ends.) When ktaper=zcross, as it does by default, the recorded samples
that occur before the first zero-crossing and after the last zero crossing are reset to
zero. When ktaper=on, the end sections of the unpadded time series, each
tapsec seconds long, will be multiplied by a cosine half-bell taper with the zero
element of the taper applied to the last point in the leading pad and the first point of
the trailing pad. When ktaper=off, no attempt is made to minimize the offsets
between the recorded samples and the zero pads.

 Figure 5.4.a illustrates the three ktaper options as applied to the end of the
Anderson Dam time series (the same time series as is shown in Figure 5.3.b and in
Appendix B). The top-most curve shows the last second of the time series before the
trailing zeros were added; the next curve shows the same curve as above, but with
trailing zeros; the next curve shows the padded time series with the default
ktaper=zcross option in effect; and the lowest curve shows the padded time
series with the ktaper=on option in effect (with tapsec=0.2). Figure 5.4.b
shows the resulting curves after the INSCOR+HICUT step has been applied to the
padded, tapered curves in Figure 5.4.a. Note that the effect of a recorded-data-
meeting-zero-pad offset is present in the top curve in Figure 5.4.b even though that

 Page 5-12 BAP
 Guidelines 01mar92

Version 1.0

algorithm used in the INSCOR+HICUT step, which treats the time series as though it
were zero-valued before and after the given samples. The instrument correction
shifted the offset backward in time, from its before-instrument-correction location at
the first sample in the region of INSCOR+HICUT's hypothetical trailing zeros, into
the last few samples of the given time series length. The time shift resulting from
instrument correction is a quarter of the instrument period. The instrument period in
this case is 0.037 seconds, so the corresponding time shift is 0.009 seconds.

 To avoid the vertical offset shown at the end of the top curve in Figure 5.4.b, one
might choose to apply the taper even when the PADding is not used, as is appropriate
when the velfit option in the AVD step is requested (see next Section). To apply
the taper (ktaper=on or ktaper=zcross) without padding, set the PAD step on
with a zero-length pad, as in: PAD,padsec=0,ktaper=on. The tapering function
was originally intended as part of the PAD step, but in this instance it would have
been more logical if BAP had been organized with the tapering function as a separate
step.

Figure 5.4.a: ktaper options

Figure 5.4.b: ktaper curves after

INSCOR+HICUT

 BAP page 5-13
 01mar92 Guidelines

Version 1.0

5.5 Velocity and Displacement

 As illustrated in the plots in Figures 5.3.a and 5.3.b, the velocity and
displacement time series integrated from a low-cut filtered acceleration time series
will begin and end at zero when sufficient pad lengths are used. The final ground
displacement cannot be obtained from a filtered record, only from a record that has
been digitized so accurately that filtering is not required, and then only if the initial
velocity is known.

 The integrations performed in BAP use zero as the initial value for velocity and
displacement. Initial values of zero are appropriate for records made by digital
recorders that have a pre-event memory and provide in their records several seconds
of motion that occurred before triggering of the recording device. Initial values of
zero are also used for digitized analog records, for lack of more appropriate values,
but the actual initial values are unknown and non-zero because these records start
only after the earthquake motion has become strong enough to trigger the recorder,
not with the very beginning of the earthquake. Although the unknown initial
velocity and displacement for triggered records should be very close to zero if the
recorder triggered early in the earthquake, even a small unknown initial velocity will
have a large influence on the shape of the displacement curve calculated from the
velocity curve.

 The velfit option in the AVD step can be used to obtain estimates of the initial
acceleration and velocity for those triggered analog records that were recorded and
digitized so accurately that the low-cut filter is not required. After the acceleration is
integrated to velocity, a sloped, fitted line is subtracted from the velocity and a
constant, equal to the slope of the line, is subtracted from the acceleration. The
velocity is integrated to displacement after the line has been subtracted. The
subtracted line is the linear least-squares fit to a user-specified portion of the velocity.
On the assumption that the velocity must be zero after the earthquake, the fit should
be applied to the final portion of the velocity, where the strong motion has subsided.
Although the correcting line may be determined from just a section of the velocity,
the extrapolated line is subtracted from the entire velocity time series. Velfit is a
rarely-used option that should only be applied to accurately recorded, accurately
digitized records for which no LOCUT filter is required. Note that velfit=on
requires that LOCUT=off (which is equivalent to NOlocut), padsec=0.0 (that
is, no padding), and that the input is acceleration, not velocity.

5.6 Low-Cut Filter Corners

 The LOCUT processing step removes low-frequency noise from a time series
with a bidirectional Butterworth filter. The user must select transition parameters for
the filter (corner and nroll) that allow as much as possible of the low-frequency
content of the signal to pass though the filter yet remove that part of the signal that is
overly contaminated by noise. These are conflicting requirements that vary from
station to station, possibly even from trace to trace on the same record. It is always
desirable to retain periods as long as, or longer by a factor of two than, the rupture
duration of the earthquake, insofar as this can be approximated by the strong-motion
duration of the record3. In structural records, it is of course desirable to retain

3 Reference [3], by Basili and Brady (1978).

 Page 5-14 BAP
 Guidelines 01mar92

Version 1.0

content at periods equal to or greater than the longest natural period of the
fundamental resonant modes of the structure.

 Several opportunities exist for determining the frequency below which (or
periods above which) noise problems are present.

1) The corrected, filtered acceleration, after two integrations, should yield a

displacement time series that contains long periods consistent with those
expected by seismological theory and experience and with records from
traditional displacement meters.

2) Long-period content in displacement curves derived from stations sufficiently

close to each other should be coherent. That is, they will have similar shapes,
although offset by applicable small time intervals. See, for example, References
[9], by Hanks and Brady, and [10], by Hanks.

3) Displacements from recorders within the same structure should be coherent at

periods longer than the natural periods of the fundamental resonant modes of the
structure.

4) The Fourier amplitude spectrum and the pseudo-velocity response spectrum of a

noise-free record should fall off more or less smoothly at low frequencies except
for resonances in structures or in soft ground. Any other behavior is suggestive
of noise, particularly if concentrated within a specific frequency range.
Possibilities for the introduction of noise at a specific low frequency include
photographic distortion, digitizing table distortions, and other mechanical
sources.

5) The Fourier amplitude spectrum of a reference trace, digitized in the normal

course of digitization of all traces on a record, is a basic measure of noise in the
recording system and digitizing system at all frequencies. During routine
processing some low-frequency noise sources, resident in the recorder itself, are
removed from the signal during the subtraction of the reference trace, followed
by subtraction of the mean value (processing steps that are performed by the
AGRAM/SCALE program at the USGS). If these recorder-resident noise sources
are insignificant, the reference traces are close to truly straight. In that case, the
reference trace spectral level represents only digitization noise, which is probably
dominant at those periods where the reference trace spectral level is as large as
the spectral level of a digitized accelerogram.

6) One need not require that the recorder-resident noise sources are insignificant, in

item # 5 above, if a truly straight line is available. The Fourier amplitude
spectrum of a true straight line, digitized as though it were an acceleration trace,
provides an indication of noise in the digitizing system (independent of the
recording system) at all frequencies. Digitization noise is probably dominant at
those periods where the spectral level of a digitized straight line is as large as the
spectral level of a digitized accelerogram. A true straight line can be produced on
a dimensionally stable film (held planar) by exposing the film to all but the
shadow of a piece of copper wire pulled in tension past its yield point. The
shadow must be cast by a point light source to obtain a sharp-edged line and the
wire should be approximately parallel to the film to obtain a shadow of uniform
thickness.

 BAP page 5-15
 01mar92 Guidelines

Version 1.0

7) The time series files in the Strong-Motion CD-ROM often contain suggested filter
parameters. When processing such a file, BAP will use the suggested parameters
from the file if the user has not provided an explicit value for the corner run
parameter. Many files in the CD-ROM contain "undefined" suggested filter
parameters, however. In such cases the user must consult the references
indicated in the comments section of the file or use one of the above techniques to
determine an appropriate low-cut filter corner.

5.7 Filter Transitions

 Filters having broad transitions between their pass-band and stop-band, like the
BAP HICUT filter with its default transition band at 50 to 100 Hz (for LSA-digitized
records) and the LOCUT filter with its default nroll=1, are preferable to filters
having narrow transition bands. Filters with narrow transitions produce oscillations
at frequencies near the cut-off frequencies, as shown in Reference [8], by Fletcher and
others. The filter applied in the zigzag examples in section 5.3 used nroll=4, just
to show exaggerated filter transients. If nroll=1 is used instead, the oscillations
are reduced and the pad length can be reduced from 8 to 3 seconds, as is shown in
Figure 5.7.

Figure 5.7

 Page 5-16 BAP
 Guidelines 01mar92

Version 1.0

5.8 Fourier Amplitude Spectra

 The fast Fourier transform, or FFT, used in the FAS processing step to transform
a time series to the frequency domain requires that the number of samples in the time
series be an integral power of 2. BAP will add trailing zeros before applying the FFT
if the number of leading and trailing zeros plus the number of samples in the input
time series is not an integral power of 2. The trailing zeros that are appended for the
FAS process are, in the default case, simply appended to the end of the current time
series with no tapering, under the assumption that the time series has already been
tapered to the pad in the earlier PAD step. When the PAD step is not applied in
preparation for the HICUT or LOCUT filter, however, the user should usually set the
jpad run parameter to request that the trailing zeros be added not in the FAS step,
but in the PAD step so the ktaper=zcross or ktaper=on tapering function that is
part of the PAD step can be performed. The jpad run parameter controls the
padding sequence. By default, when jpad=5, short 2-second pads are added before
the INSCOR+HICUT step, the pads are then extended (to tapsec seconds) before
the LOCUT step, then the trailing pad is extended again (to 2n samples) in the FAS
step. When one is using BAP to plot the Fourier amplitude spectrum of an unfiltered
time series, it is best to set jpad=0 so the trailing zeros required for the FAS step
are appended in the PAD step, along with the default ktaper=zcross tapering.
For example, a plot of the Fourier amplitude spectrum of the input time series used
for the first example in Appendix B can be generated with the following two
commands:

 $|> bap idc=xx, gilroy21.smc, jpad=0, FAS(p)
 $|> print xxplots.aps

(This assumes that the gilroy21.smc data file has been copied to the user's local
directory.) See Chapter 3 for more information about jpad, Section 5.4 of this
Chapter for more information about the tapering.

 To compare Fourier amplitude spectra from several different time series, it may
be advantageous to arrange that the sampling interval in the frequency domain be
the same for each spectrum in the comparison, so the spectra can be compared point
by point. The sampling interval in the frequency domain is the reciprocal of the
time-series duration, the product of the sampling interval in the time domain and the
number of time-domain samples. Consequently, the user may wish to pad the
shorter of two time series (whose Fourier amplitude spectra will be compared) with
enough trailing zeros that the lengths of the two padded time series are equal. The
user can indicate the size of the trailing pad required through the padsec(2) run
parameter.

 Note that spectral plots from the FAS step show increasing frequency from left
to right along the horizontal axis (see Figures 5.6.a and .b for example), in contrast to
the plots from the RESPON step, which show increasing period (see Figure 5.9 for
example). Note also that FAS plots of a filtered time series, such as the one in Figure
B.3.d in the Examples Appendix, will often show dense fluctuations at very low
amplitude and at frequencies that are higher than the transition band of the HICUT
filter. These fluctuations are at the limit of the accuracy of the computer's floating-
point numbers, relative to the peak value in the Fourier spectrum, and have no
significance other than to indicate that the Fourier content has been removed at those
frequencies.

 BAP page 5-17
 01mar92 Guidelines

Version 1.0

5.9 Response Spectra

 The range of the spectrum presented by the RESPON step is restricted to
periods equal to or greater than ten times the sampling interval of the time series,
10∆t, due to limitations in the algorithm used by BAP for calculating maximum-
response values. This limitation is mentioned on pages 914-915 of Reference [16], by
Nigam and Jennings. The paper discusses the limitation of the algorithm in terms of
the interval of integration, which in the BAP application of the algorithm is the same
as the sampling interval of the time series.

 For time series sampled at 200 samples per second, like those from the Strong-
Motion CD-ROM, the lowest period in the response spectrum should be at or above
0.05 seconds, which is the default value for the beginning of the spectrum, sper(1).
Even if the user specifies a lower value for sper(1), the RESPON curves will not
extend below 10∆t except in special cases where the cliprs run parameter is set
to off. By default, cliprs=on; the cliprs=off setting is meant only for use in
test situations where one wishes to investigate the behavior of the response spectra
calculations below the critical period of 10∆t.

 A user who requires response spectra with periods that extend below 10∆t could
reinterpolate the input time series to a denser sampling rate before applying the
RESPON step. The response spectra algorithm would be stable down to the new
value for 10∆t, but the user would need to keep in mind that there is no real
frequency content in the more densely-sampled version of the time series above the
Nyquist frequency (having a period of 2∆t) of the original sampling. This must be
taken into account when making use of response spectra calculated from some of the
time series on the CD-ROM also. Although most of the time series in the CD-ROM
collection are given at 200 samples per second, some of the older records were
originally digitized at much coarser sampling rates. For instance, the El Centro
record used in the example in Figure 5.2.b was originally digitized at an average of
only 18 samples per second, but it is given on the CD-ROM at 200 samples per
second.

 A sample plot from the RESPON step is shown in Figure 5.9. The five curves
represent the five damping fractions given for sdamp. (In this case, sdamp = 0.0,
0.02, 0.05, 0.1, and 0.2, which are the default values.) The number of dots
in the dash-dot pattern of the curves indicate increasing damping fraction: the solid
line is the curve corresponding to sdamp(1), the line with a single dot in its pattern
corresponds to sdamp(2), and so forth. The vertical line at 0.05 seconds serves as a
warning that the response curves extending to the left of that line are inaccurate. The
plot was generated with cliprs=off. If cliprs had been set to on (the
default), the curves would not have extended below 0.05 seconds, even though a
lower spectral range was requested via sper(1). The plot was generated with the
following commands:

 $|> bap idc=xx, mydata.bbf, respon(p), cliprs=off &
 sdamp= 0.0, 0.02, 0.05, 0.100, 0.20
 sper= 0.04, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0
 sdper= 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, done
 $|> print xxplots.aps

 Page 5-18 BAP
 Guidelines 01mar92

Version 1.0

5.10 Some Sample Command lines

 The input commands and corresponding results from two sample BAP runs that
illustrate complete processing for two different time series are presented in
Appendix B. A few more sample commands are shown in this section to illustrate
various other ways of using BAP. These examples are shown as though they were
invoked on a PC computer, but that is only because they make use of the PC versions
of default BAP output file names rather than the VAX versions. The default BAP
output file names all begin with the three characters "bap" on a VAX, while they
begin with the two characters "bp" on a PC (because PC filenames are limited in
length). The examples in this section, like all the examples in this report, make use of
a print command that communicates with a PostScript printer. The printing
function may require a different command on some computers.

 To use BAP merely to generate a screen plot of a time series from the Strong-
Motion CD-ROM, one could use:

 dos> bap tsdata.smc
 dos> scrplot bpplots.aps

In this example, the file named tsdata.smc (which could be a copy of any of the
time series data files from the Strong-Motion CD-ROM) is given as the only
parameter on a BAP command line. By default, when no processing steps are
requested, BAP generates a plot of its input file, placing the plot information in a file

Figure 5.9

 BAP page 5-19
 01mar92 Guidelines

Version 1.0

named bpplots.aps (bapplots.aps on a VAX). The SCRPLOT program, as
shown above, can then be used to display the plot on the user's screen. Or, for a
hard-copy plot, the bpplots.aps file could be sent to a PostScript printer:

 dos> print bpplots.aps.

 To convert a SMC-format data file to BBF format, so one could plot the time
series using options provided by the TSPLOT program, one could use:

 dos> bap tsdata.smc, input(f), outfmt=bbf
 dos> rename bpinout.bbf tsdata.bbf
 dos> stsp tsdata.bbf, 10.2,10.4,0.2, pltdots

In this example, BAP's reformatted output file, initially named bpinout.bbf then
renamed to tsdata.bbf, is plotted via the STSP program, the screen version of
TSPLOT. Only the interval from 10.2 through 10.4 seconds is plotted and, due to the
pltdots requested on the STSP command line, each plotted sample is marked with
a small dot.

 To convert the other way, from a BBF-format file to a SMC-format file, one could
use:

 dos> bap mydata.bbf, input(f), outfmt=smc
 dos> rename bpinout.smc mydata.smc

Note that one can convert a SMC-format file to a BBF-format file and back again to a
SMC-format file without losing any of the auxiliary header information. Some
header information may be lost, however, if one converts a BBF-format file to a SMC-
format file and back again to a BBF-format file. Any leading or trailing pad samples
in the original BBF-format file would also be lost if one converted a BBF-format file to
a SMC-format file and back again to BBF-format, for BBF files include the pad
samples and SMC-format files do not.

5.11 Run Messages

 Diagnostic messages written by BAP show three asterisks (***) in the left-
hand margin of the screen display and in the left-hand margin of the bprun.msg
(baprun.msg on a VAX) file. By default, the program will stop after printing such a
message, but whenever users reset the default warn=stop to warn=bells or
warn=msg, it is important that they check the run messages for "***" diagnostics
before trusting the validity of BAP's plots or output data files.

 Page 5-20 BAP
 Guidelines 01mar92

Version 1.0

 BAP page 6-1
 01mar92 Support Programs

Version 1.0

Chapter 6

Support Programs

 Miscellaneous support programs that can be used in conjunction with BAP are
listed in this Chapter. Many of these support programs are not available for PCs yet,
but PC versions may be added in the future.

 Instructions for using each program are displayed on the user's computer screen
when the name of the program, with no command line arguments added, is typed in
response to the prompt from the operating system. More information about each
program is available through the HELP command, and more information about the
plotting programs is available in Chapter 7.

VAX PC Program Program
 ? ? name function

n.a. yes LOWBAP An alternative version of BAP for PCs that loads faster

than PC/BAP does. LOWBAP executes more slowly than
BAP and it will truncate a long time series, but it can be
more convenient than BAP in some cases: when one is
simply using BAP/LOWBAP to reformat a short time
series file, for instance, and does not require that
BAP/LOWBAP do many computations. BAP is a 32-bit
protected-mode program that runs in extended memory;
LOWBAP is a 16-bit real-mode version of the same
program that runs in conventional (or "low") memory.
LOWBAP limits (truncates) the time series it can deal with
to 16K samples; that's 80 seconds of an evenly-sampled,
200-sample-per-second time series.

yes1 yes SCRPLOT Screen plotting program. SCRPLOT will display the

contents of an AGRAM-PostScript file (a .aps file) on the
user's screen. On the USGS VAXes, SCRPLOT will also
display the contents of a batch.plt file (or any binary
plot file generated by the USGS VIEWER/PLOTLIB
software). SCRPLOT can only interpret the limited

1 Some programs indicated as being available on VAXes are available only on the

USGS VAXes in Menlo Park; they are not included with the BAP distribution files.

BAP page 6-2
01mar92 Support Programs

Version 1.0

VAX PC Program Program
 ? ? name function

 PostScript conventions used in AGRAM-PostScript files, it

is not a general-purpose PostScript interpreter.

 TSPLOT Time-series plotting program for blocked-binary time-

series data files (.bbf files). TSPLOT offers far more
flexible plotting options than does BAP. See Chapter 7 for
more information.

yes yes PTSP PostScript-plotting version of TSPLOT.
yes1 yes STSP Screen-plotting version of TSPLOT.

 FASPLOT Fourier amplitude spectra plotting program for blocked-

binary time-series data files (.bbf files). FASPLOT
offers far more options for Fourier amplitude spectra plots
than does BAP. See Chapter 7 for more information.

yes yes PFAS PostScript-plotting version of FASPLOT.
yes1 yes SFAS Screen-plotting version of FASPLOT.

 SMCPLOT Time series plotting "program" for SMC-format time-series

data files (.smc files). This is implemented with .bat
files that invoke BAP to reformat the SMC-format file to a
BBF-format file then invoke TSPLOT to plot the contents of
the new file. The main purpose for this "program" is to
provide the psmc.bat and ssmc.bat files as examples
of how to use TSPLOT with SMC-format data files.

yes yes PSMC PostScript-plotting version of SMCPLOT.
yes1 yes SSMC Screen-plotting version of SMCPLOT.

no no RSPLOT Response spectra plotting program. This program isn't

available yet, but should be added to the AGRAM
programs to provide more options for response spectra
plots than are available in BAP.

yes1 yes TXTMODE Resets the video from graphics mode to text mode. Use

this after a screen-plotting program aborts (or you abort
one intentionally with Control+C), leaving the screen in
graphics mode. For more information, see step 2 of Section
E.3 in the Installation Appendix.

n.a. yes MSHERC Video support software for Hercules-compatible monitors

and adaptors on PCs. For more information, see step 6 of
Section E.2 in the Installation Appendix. This software was
provided by Microsoft with their Fortran compiler.

n.a. yes WHATMEM Indicates whether and how much extended memory is

available on the computer. This software was provided
with the Ergo OS386 DOS-extending software used by
PC/BAP. For more information see step 8 of Section E.2 in
the Installation Appendix.

no yes ASC2PS Text-to-PostScript converting program. This "shareware"

software was provided by B.W.Miller.

n.a. yes WMBOOT Warm-Boot command for PCs. See

c:\agram\docs\altboots.doc for more information.

yes no BBFDMP Blocked-binary data-file dumping program.

 BAP page 6-3
 01mar92 Support Programs

Version 1.0

VAX PC Program Program
 ? ? name function
yes no BWRITE Header-block changing program for blocked-binary data

files.
yes no ROTATE Reads two blocked-binary time-series files that represent

orthogonal, horizontal components of motion, rotates their
orientation, then writes two new output files.

yes no COMBINE Combines several blocked-binary time-series data files into

a single new file. The program combines corresponding
samples from any number of time series according to
arithmetic operators specified by the user on the
COMBINE command line. The COMBINE functions can
be accomplished on a PC by using the MATLAB software
described in Reference [24].

yes no IMPORT Transfers time-series data from various text file formats to

the ES&G blocked-binary file format. Those who need to
process time-series files that are in a format that is not
recognized by IMPORT can code their own reformatting
program using one of the sample programs discussed in
Section G.5 of the Programming Appendix.

yes no EXPORT Transfers data from blocked-binary time-series data files to

various text file formats.

yes no DUMDAT A dummy data generating program. DUMDAT can create

data files by combining several sinusoidal curves and/or
several curves constructed from straight line segments.
DUMDAT is only available as an example of Fortran code,
not as an executable program.

yes yes BBDATA A sample program that illustrates how to read and write

blocked-binary time-series data files. BBDATA also
illustrates how to use the general plotting subroutine,
GENPLT, that does all the plotting functions in BAP and
many of the plotting functions in other AGRAM programs.
BBDATA is only available as an example of Fortran code,
not as an executable program. See Section G.5 in the
Programming Appendix for more information.

yes yes GATHER A little program used mostly in program development and

in conjunction with the SCATTR program. GATHER will
collect a group of related files into one long file, and
SCATTR will regenerate the small files from the gathered
collection.

 See Appendix G for more information about GATHER and
SCATTR.

yes yes SCATTR See GATHER.

yes no HELP Offers information about all the programs listed here. (The

PC version should be available soon.)

 Examples of valid command lines for most of these programs are shown in
Appendix A. More information about each program is available via the HELP
command. Use:

BAP page 6-4
01mar92 Support Programs

Version 1.0

 $|> help program-name
 $|> help agram-topics
 $|> help topic

 BAP page 7-1
 01mar92 Plots

Version 1.0

Chapter 7

Plots

 BAP provides plots by writing plot descriptions in the PostScript language1 to a
disk file named bapplots.aps (or something similar). The bapplots.aps file
can be sent directly to a PostScript printer with the print command (i.e.,
$|> print bapplots.aps) or viewed on the user's screen via the SCRPLOT
program included among the BAP support programs (i.e.,
$|> scrplot bapplots.aps).

 If the user's printer is not a PostScript printer, the bapplots.aps file must be
translated from PostScript format into a format the printer can accept. There are
several commercially available PostScript-to-other-printer-format conversion
programs that can be used to do the translating. The \agram\docs\comsoft.nts
file included among the BAP distribution files lists the names and addresses of
several software companies that provide PostScript-to-other-printer translating
software for PCs.

7.1 Plotting Programs

 The plotting support programs distributed with BAP are TSPLOT, FASPLOT,
and SCRPLOT. TSPLOT generates time-series plots, FASPLOT generates Fourier
amplitude spectra plots, and SCRPLOT displays the plot(s) described in an
AGRAM-PostScript file on the user's screen. The BAP program will also generate
time-series plots and Fourier amplitude spectra plots, but TSPLOT and FASPLOT
offer the user more control over the appearance of the plots than does BAP.

 There are two versions of TSPLOT and FASPLOT (and more than two versions
of each on the USGS VAXes -- see section 7.6). Each version of TSPLOT and
FASPLOT is distinguished from the other version of the same program by the first
character of the version name, with that first character indicating the plotting
medium. The two versions of TSPLOT are stsp and ptsp: stsp plots on the
user's screen and ptsp writes a plot description to a PostScript file. The two
versions of FASPLOT are sfas and pfas.

 TSPLOT and FASPLOT require blocked-binary time-series data files as input
files; SCRPLOT requires an AGRAM-PostScript file as its input file. The blocked-

1 The PostScript page description language is described in References [1] and [2].

 page 7-2 BAP
 Plots 01mar92

Version 1.0

binary time-series data files (.bbf files) are generated by the BAP program; the
AGRAM-PostScript plot-description files (.aps files) are generated by BAP, PTSP,
and PFAS.

 The contents of an AGRAM-PostScript file can be sent to a PostScript printer for
hard-copy plots or processed through SCRPLOT for screen plots. Examples:

 $|> scrplot plots.aps
 $|> print plots.aps (only if the print command is

connected to a PostScript printer!)

 To use TSPLOT, FASPLOT, or SCRPLOT, the user can simply type the name of
the program followed by the name of the program's input file. Examples:

 $|> stsp mytsdata.bbf
 $|> pfas bapvel.bbf
 $|> scrplot bapplots.aps

Many additional options are available in TSPLOT and FASPLOT, however.

7.2 Screen Plots

 If one of the screen-plotting programs (SCRPLOT, STSP, SFAS) aborts, the user
will need to reset the video mode from graphics mode back to text mode. Use the
TXTMODE command to do so:

 $|> txtmode

 The characters shown in the PC screen plots may be so small that you can barely
read them, especially if you have a small screen. If you really need to read the
characters, you can request that the screen-plotting programs use normal PC display
characters rather than the tiny plotted characters that are used by default. Set the
"msfonts" environment variable to indicate which type of characters should be
displayed. When msfonts=no, the normal PC display characters are used, when
msfonts is undefined or set to a directory that contains a modern.fon file, the
characters are drawn according to the information given in the modern.fon file.
(By default, the PC screen-plotting programs attempt to find the modern.fon file
in the c:\agram\exes directory.) For more information about msfonts and PC
screen plots, refer to step 2 in Section E.3 of the Installation Appendix.

7.3 Plotting on Computers other than PCs

 The PC versions of the BAP support programs that plot on the user's screen
(SCRPLOT, STSP, and SFAS) use calls to subroutines provided by the Microsoft PC
fortran compiler to make the plots. User's wanting to install the screen-plotting
support programs on computers other than PCs will need to provide a software
interface between the distributed code and whatever screen plotting software is
available on the relevant computer. This is true for VAXes as well, for the screen-
plotting software used with BAP on the USGS VAXes in Menlo Park is not included
with the BAP distribution files. Or, rather than modify the screen-plotting BAP
support programs, users could use one of the commercial software packages that
display PostScript plots on computer screens.

 On some other-than-PC computers, users may want to modify the plotting
software that generates hard-copy plots in addition to modifying the screen-plotting

 BAP page 7-3
 01mar92 Plots

Version 1.0

software. The AGRAM-PostScript processing is rather slow, so it may be preferable
to change the programs to use whatever intrinsic plotting software is available on the
relevant computer rather than to use the PostScript-plotting versions distributed
with BAP.

 See Appendix G for more information about the BAP/AGRAM source code.
Section G.4 discusses the plot interface.

7.4 TSPLOT, Time-Series Plotting program

 TSPLOT plots the contents of the blocked-binary time-series data files produced
by BAP and other AGRAM programs. Refer to the figures in Chapter 5 for examples
of TSPLOT output plots.

 To run TSPLOT in its simplest form, type the name of the version you wish
(stsp or ptsp), followed by the name of one or more blocked-binary time-series
data files, as in:
 $|> stsp mydata.bbf, yourdata.bbf

Or, to override the default parameters, use --

 stsp bbf-input-file(p), bbf-input-file(#)
 bbf-input-file(#,#),
 ... (any number of bbf file names) ...
 title-file,
 tbegin,tend,spp,ysize,yspace, flags

 where flags are any combination of: nopad, dots, portrait,

nosync, nocc, arrow, circle, nopeak,
nolabels, axesonly, noxlbl,noylbl,
notlbl, noxax, onexax, twoxax, oldxax,
noyax, oneyax, twoyax, seb,
xmargin(#,#), ymargin(#,#), upcase,
runmsg(filename)

The bbf-input-file names specify disk files containing the time series to be
plotted. When the names of several files to be listed on a TSPLOT command line
have the same prefix and only differ in their suffixes, the prefix need only be given in
the first name listed. The name of a text file that contains a top-of-plot title may also
be included. Example:

 $|> stsp mydata.a01,.a03, yourdata.a01,.a03, topplot.txt

This example uses default scaling and labeling options. Each resulting plot page
shows 20 seconds of each time series curve (one curve for each blocked-binary time-
series file given on the command line). The curves are shown in separate strips
across the page, each strip with its own y-axis, and the width of the strips (length of
the y-axes) depending on the number of curves on the page. The first two significant
digits, plus one, of the peak value of a curve are used for the scale on that curve's y-
axis. The title at the top of the plot will come from the text file specified in the
command line, or if there was no text file, the title will consist of the names of the
time-series files.

 To alter the vertical scale for any curve, the user may include one or two
numbers, or a "p", in parentheses after the file name to indicate the range for the y-
axis. If two numbers are given, they indicate the minimum and maximum value for

 page 7-4 BAP
 Plots 01mar92

Version 1.0

the axis; if just one number, it indicates the maximum value for the axis and the
absolute value of the axis minimum. If there is a "p" in the parentheses, the peak
value found in the curve will be used as the y-axis limit, without any rounding
adjustment to the value. Example:

 $|> stsp mydata.r01(p),.r02(-15,+25),.r03(30)

 To alter the size of the y-axes and the range of the x-axis, one may include up to
five numeric parameters after the file names on the command line. The meaning of
these numbers depends on the order in which they are given, so give a null value
(two consecutive commas) if you wish to use a default value among other parameters
you wish to set. The numeric parameters and the order in which they must be given
are: tbegin, tend, spp, ysize, yspace.

tbegin is the time at which the plot will begin. Default = the time corresponding

to the time of first sample in the earliest time series to be plotted.
tend is the time at which the plot will end. Default = ending time of the late-

most ending curve.
spp are the number of seconds to appear across each plot page. Default =20.0.

If tend - tbegin is greater than spp, more than one page will be
plotted.

ysize is the size of the y-axes, given as a fraction of the plot page.
yspace is the size of the space to be left between the plot strips, given as a fraction

of the plot page.

 To compare the shapes of curves plotted in several different TSPLOT runs, it is
often a good idea to provide a value for ysize so that all the curves to be compared
use a y-axis of the same size. If ysize is not specified, TSPLOT will choose a value
that depends on the number of lines in the top-of-plot title and on the number of
curves to be plotted on the page. Ysize values of 0.7, 0.3, 0.2, and 0.14 work
well for one, two, three, and four curves per plot page, respectively.

 When ysize is small enough, and the time axis is longer than will fit across
one page, the plot will be continued on the same page as the first plot rather than on
another page. Example:

 vax$ stsp pub1:[agram.testdata]eda.a01,0,15,5, 0.18

 In addition to the five numeric parameters that control how the plots will
appear, there are a number of keywords that may be included on the command line
(in any order) to affect the appearance of the plots. The recognized keywords are:
nopad, dots, portrait, nosync, nocc, arrow, circle, nopeak,
nolabels, axesonly, noxlbl,noylbl, notlbl, noxax, onexax,
twoxax, oldxax, noyax, oneyax, twoyax, seb, xmargin(#,#),
ymargin(#,#), upcase, and runmsg(filename).

nopad By default, TSPLOT will show the leading and trailing pad areas that

may have been added to the beginning and end of the time series by
the BAP program (or the older CORAVD, AVD, or ADDPAD
programs). To override this default and request that the pads not be
shown, include "nopad" on the command line.

dots Include "dots" on the TSPLOT command line if you wish to have

each plotted point marked with a little circle. dots should not be
requested unless a very small segment of the time series is to be

 BAP page 7-5
 01mar92 Plots

Version 1.0

plotted, otherwise the plot will show many overlapping little
circles. Example:

 $|> stsp bapdis.bbf, 5.4,5.8,0.2,dots

portrait The portrait flag is used to request that the plot page be rotated

from the default landscape orientation to portrait orientation. By
default, the horizontal x axis is oriented across the wider dimension
of the plot page, as in a landscape picture and as it makes sense to
have the plots displayed on VDT screens, which are usually wider
than they are high. But if "portrait" is included on the command
line, the x-axis will be oriented across the narrower dimension of the
plot page, as in a portrait picture. An example:

 vax$ ptsp pub1:[agram.testdata]hz2and16.syn, &
 dummydata.syn, 4.dum,eda.a01,
 30.dum,2890810o4.bse,.bne,
 eda.v01,dummydata.syn,eda.d01, portrait,
 twoxax,twoyax,noylbl,notlbl,
 ymargin(-0.01,-0.97)

nosync and nocc: By default, when plotting more than one time series on a single

page, TSPLOT will attempt to syncronize the several time series
using timing information that may be located in the header blocks of
the input files. To request that the syncronizing not be performed, so
the first sample of each time series will be shown at the first point on
the x-axis no matter what timing information is in the header blocks,
include "nosync" on the command line. To request that the
syncronization be performed without including the clock correction
values from the header blocks, include "nocc" on the command
line. (The clock correction values are inaccurate in some of the
blocked-binary time-series files in the ES&G data collection at the
USGS.)

arrow, circle, and nopeak: These three options alter the way the peak values

in each curve are labeled. By default, the numeric value of the peak
is shown just above the peak. But if "arrow" is included on the
command line, a little arrow pointing to the peak will be used
instead of the numeric label. If "circle" is on the command line, a
little circle will mark the peak. And if "nopeak" is on the command
line, the peak will not be labeled at all.

nolabels, axesonly, noxlbl, noylbl, notlbl and seb: These options

alter the other labels. With "nolabels" on the command line, no
labels will be plotted, except perhaps those next to the peaks.
"axesonly" is like nolabels except that the axes are plotted along
with the curves. "noxlbl" omits the x-axis label, "noylbl" omits
the y-axis label, and "notlbl" omits the top-of-plot label. Including
noxlbl, noylbl, and notlbl on the same command line has the
same effect as axesonly. The "seb" flag is used by members of
the USGS to arrange the top-of-plot titles in a form suited for some of
the data reports published by the USGS.

noxax, onexax, twoxax, oldxax, noyax, oneyax, and twoyax: These

options indicate how many x or y axes should be plotted. With

 page 7-6 BAP
 Plots 01mar92

Version 1.0

twoyax, two y-axes are shown for each curve (left edge and right
edge). With twoxax two x-axes are shown on each page (top and
bottom), regardless of the number of curves on the page. Oneyax
and twoxax are the current defaults.

xmargin(#,#) and ymargin(#,#): The xmargin and ymargin options allow

the user to define the size of the margins around the plots. The two
numbers in parentheses following xmargin indicate the location of
the left-hand and right-hand margins as fractions of the plot page;
the two numbers in parentheses following ymargin indicate the
location of the lower and upper margins, again as fractions of the
plot page. If the numbers are positive, the various labels will be
placed in the margins so that the x and y axes will fill the space
between the margins completely. If the numbers in the parentheses
are negative, the margins will be left empty, the labels will be placed
in the plot space, and the axes shortened accordingly. The current
defaults are xmargin(+0.15, +0.95) and ymargin(-0.05, -
0.9).

upcase Indicates that the plot labels should be shown in upper case

characters.

runmsg(filename) indicates the name of an optional output file that will contain

run messages and diagnostics that would normally be displayed on
the user's screen.

7.5 FASPLOT

 FASPLOT plots the Fourier amplitude spectrum of evenly-sampled time series
contained in blocked-binary data files. The time series must be evenly-sampled. To
use FASPLOT with AGRAM/SCALE output files, which contain uncorrected,
unevenly-sampled data, one must first create a file of uncorrected but interpolated
data (using BAP or AGRAM/HIFRIC).

 To run FASPLOT in its simplest form, type the name of the version you wish
(sfas or pfas), followed by the name of a blocked-binary time-series data file, as
in:
 $|> sfas mydata.bbf

Or, to override the default processing parameters, use:

 sfas FASfile= bbf-input-file1, bbf-input-file2,
 tbeg, tend, options

 where options are any combination of: misc-options,

computing-options, plot-axis-options,
plot-title-options, and tsplot-style-
options

 misc-options are tsplot, nonoise, or
runmsg(filename)

 computing-options are any combination of:
nsamples(#), datataper(#), zcross,
notaper, smooth, nosmooth, fas, fasi,
fasi2, fasd, fasd2 or fps

 BAP page 7-7
 01mar92 Plots

Version 1.0

 plot-axis-options = any combination of: loglog,

loglin, linlog and linlin.
 plot-title-options = any combination of: top,

nolabels, notitle, axesonly; or the name of
a text file containing the plot title.

 tsplot-style-options = any combination of:
portrait, xmargin(#,#), ymargin(#,#),
upcase.

Some examples:

 dos> sfas \vaxdata\eda.a01
 dos> sfas fromFAS.txt =c:\vaxdata\eda.r01, &
 zcross,smooth, fas,fasi,linlin,loglin,loglog
 $|> sfas mydata.bbf, &
 fas, loglog(-3,-,-2,3), fasi, loglog(-3,-,-2,3)
 $|> sfas mydata.bbf, xmargin(0.3,0.9)

 Up to three input file names can be specified on the FASPLOT command line.
The bbf-input-file names specify blocked-binary data files containing the time
series for which Fourier amplitude spectra plots are requested. Just one time-series
data file is usually requested on a FASPLOT command line, but two time-series data
file names can be given, in which case, Fourier amplitude spectra plots will be
generated for each of the two input time series and a plot showing the ratio of the
two specta will also be generated. The name of an input text file containing a top-of-
plot label can also be given on the command line. An example:

 $|> pfas mydata.bbf,yourdata.bbf,topplot.txt

 The name of an output file to receive the Fourier amplitude spectrum values can
be specified on the command line also. If given, the output file name should be the
first parameter given on the command line after the program name (sfas or
pfas), and it should be separated from the input file names with an equal sign. This
output file will be a formatted text file, not a blocked-binary file. Another example:

 $|> pfas fas.txt= mydata.bbf

 The list that follows describes other options that can be indicated on a FASPLOT
command line.

tbeg and tend are numeric values that indicate the times, in seconds, that bracket

the section of the input time series to be processed. By default,
tbeg and tend are the times corresponding to the first and last
points on the input file, respectively. The default tbeg and tend
bracket the entire input time series, including the leading and
trailing pads, if any.

misc-options are tsplot, nonoise, or runmsg(filename) where:

tsplot is an optional keyword that indicates that a plot of the padded, tapered time

series should be shown above each spectrum plot.
nonoise is another optional keyword that indicates that the spectra plots should

not show amplitudes at frequencies above the hitbeg transition
frequency used with BAP's high-cut filter (if such has been applied
to the input time-series) or below the corner frequency used with

 page 7-8 BAP
 Plots 01mar92

Version 1.0

BAP's low-cut filter (if such has been applied to the input time-
series).

runmsg(filename) indicates the name of an optional output file to receive the run
messages and diagnostics that would normally be displayed on the
user's screen. It is often useful to specify a runmsg file when using
sfas, since run messages displayed on the screen can interfere with
the plots and vice-versa.

computing-options are any combination of: nsamples(#), datataper(#),
zcross, notaper, smooth, nosmooth, fas, fasi, fasi2, fasd,
fasd2 or fps, where:

nsamples(#) specifies the length of the padded or truncated time series to be

transformed by the FFT. The number in parentheses must be an
integral power of 2. By default, FASPLOT will add trailing zeros to
the input time series, if necessary, to bring the number of samples up
to an integral power of two.

datataper, zcross and notaper indicate how the discontinuity (if any) between
the input time series and the trailing zeros (if any) should be treated.
The datataper keyword may be followed by a real number in
parentheses. The number must be between 0.0 and 0.5 and specifies
the length of the taper as a fraction of the input time series length.
(Note that the taper length is given to FASPLOT as a fraction of the
time series length, in contrast to the taper length in BAP, tapsec,
which is given in seconds.) The zcross keyword indicates that
time-series samples before the first zero crossing or after the last zero
crossing should be reset to zero.

smooth and nosmooth are Fourier amplitude smoothing options. The smooth
keyword may be followed by an integer number in parentheses. The
number should be odd and it specifies the number of weights to use
in the triangular smoothing function. Note that smooth(1) and
nosmooth are equivalent and are the default. Note too that it is the
squared amplitudes that are smoothed when smooth is specified,
not the amplitudes themselves.

fas, fasi, fasi2, fasd, fasd2 and fps are keywords that indicate the type of
curves to be plotted: Fourier amplitude spectrum of the input time
series (fas), Fourier amplitude spectrum of the time series
integrated with respect to time (fasi), integrated twice (fasi2),
differentiated (fasd), differentiated twice (fasd2), or Fourier phase
spectrum (fps).

The default computing options are zcross, nosmooth, fas and nsamples(n),
where n is the nearest power of two greater than the number of samples given in
the input file.

 The plot-axis-options may include any or all of the four keywords that
indicate the type of axes to use in the spectra plots. The keywords are: loglog,
loglin, linlog and linlin. They indicate whether the x and y axes should
be plotted in logaritmic or linear scale. Note that it is only in linlin and linlog
plots that the first point, that for zero frequency, will be plotted. The loglog and
loglin plots omit the zero-frequency point.

 By default, the program will choose the range for each axis, but users may
specify these too, if they wish. Each type-of-axis keyword may be followed with
parentheses containing four numbers, the numbers separated from one another with

 BAP page 7-9
 01mar92 Plots

Version 1.0

commas or blanks. The numbers indicate the beginning value for the x-axis, ending
value for the x-axis, beginning value for the y-axis and ending value for the y-axis,
respectively. A dash (-) may be used in place of any of the four numbers to indicate
that the program should choose an appropriate number. For linear axes, the number
is the actual value to be used at one end of an axis. For log axes, the number is an
exponent of ten to be used at one end of an axis. The user-specified axis ranges will
be adjusted, if necessary, so that log axes will begin and end at integral powers of
ten, and linear axes will begin and end at some convenient number close to the user-
specified number.

 When requesting that several types of curves be plotted (more than one of the
fas, fasi, fasi2 ... options) and also specifying different axis ranges for each
type of plot, one must repeat the plot axis options after each type-of-curve option. To
do so, follow each type-of-curve option with the axis options applicable to that curve.
Example:

 fas, loglog(-3,-,-2,3), fasi, loglog(-3,-,-2,3)

The default plot axis option is loglog(-,-,-,-).

 The plot-title-options are any combination of: top, fig, doc,
nolabels, notitles or axesonly; or the name of a text file containing the plot
title. The top keyword (the default) indicates that the plot title should be shown at
the top of the plot page. The top-of-plot title will consist of the input file names or
the text from the input text file. In addition, the value of the computing options will
be shown. The fig and doc options are rarely used (and may be removed from
the program one day): refer to the information displayed via $|> help fasplot
for information about these two options. The nolabels and axesonly keywords
act as they do for the TSPLOT program. With nolabels, nolabels or axes will be
plotted, just the curve. axesonly is like nolabels except that the axes are plotted
as well as the curves. With notitles, the axes will be plotted and labeled, but there
will be no title at the top of the plot.

 Other tsplot-style-options that work in FASPLOT as they do in
TSPLOT are: portrait, xmargin(#,#), ymargin(#,#), upcase. These
keywords have the same effect in FASPLOT as they do in TSPLOT.

 page 7-10 BAP
 Plots 01mar92

Version 1.0

7.6 Additional Plotting Functions Available only on the USGS

VAXes

 There are two versions of BAP on the USGS VAXes, BAP and VWRBAP. BAP
produces its plots in a postscript file (bapplots.aps), while VWRBAP produces
its plots in a batch.plt file via the VIEWER/PLOTLIB plotting software used on
the USGS VAXes.

 There are more than two versions of TSPLOT and FASPLOT on the USGS
VAXes. In addition to the same stsp, sfas, ptsp, and pfas commands that
are available for PCs, there are:

 dtsp and dfas, which write binary plot description information in

VIEWER/PLOTLIB format to a disk file named batch.plt.
Several AGRAM and VIEWER replotting programs (e.g.,
scrplot, lsrplot, and viewer) can subsequently process
the batch.plt file.

 ltsp and lfas, which plot to the laser printer.
 vtsp and vfas, which plot to the Versatec printer.
 ctsp and cfas, which plot to the CalComp plotter.
 ntsp and nfas, which do not plot at all, but display the labels that would have

been plotted if a different version of the programs were used.
(These are sometimes useful in debug situations.)

 itsp and ifas, which issue prompts from the device-independent
VIEWER/PLOTLIB plotting software that the user must
answer to indicate which plot medium to use.

 tsplot and fasplot, which are synonyms for itsp and ifas.

 The versions of TSPLOT and FASPLOT on the USGS/ES&G VAXes allow the
user to indicate which typeface should be used for plot labels. To do so, include one
of the typeface names on the command line: simple, romcom, romdup,
romsim, romtrp, or cyrcom.

 After running dtsp, dfas, itsp or ifas, the plots in the resulting
batch.plt file can be displayed on the user's screen via the scrplot command
and/or they can be sent to the laser printer via the lsrplot command. The
scrplot and lsrplot commands can distinguish whether they are dealing with
a binary VIEWER/PLOTLIB plot description file or with an AGRAM-PostScript file.
If the user types either scrplot or lsrplot without adding the name of the file
that contains the plot description, the contents of the most recent version of
batch.plt in the user's local directory will be plotted.

 The various AGRAM plotting commands (e.g., stsp, dfas, scrplot) are not
really separate programs on the USGS VAXes (as they are in the PC versions) but are
merely VAX/VMS indirect command files set up to run the device-independent
version of the program (itsp, or ifas) with predetermined answers to the
VIEWER/PLOTLIB prompts and with the results sent to the appropriate plotting
device. As a consequence, the commands are somewhat clumsy:

• They display a lot of unnecessary run messages.
• When something goes wrong, they give rather confusing diagnostic messages.

 BAP page 7-11
 01mar92 Plots

Version 1.0

• All the parameters on a command line must be separated from one another
with commas: spaces will not work as parameter separators as they do in all
the other AGRAM commands.

• No more than 8 spaces can be given on any command line: anything beyond
the ninth space will be ignored.

• A long command must be continued from one line to the next by adding a
dash (-) to the end of each line to be continued, rather than by adding the
ampersand (&) to the end of just the first line.

To bypass the indirect command file processing, one can use the itsp or ifas
versions of the plotting programs and answer the plotting system's prompts.

 For more information about the way plotting is handled on the USGS/ES&G
VAXes, use:

 vax$ help agram-plots

 page 7-12 BAP
 Plots 01mar92

Version 1.0

 BAP BAP
 01mar92 01mar92

Version 1.0

APPENDIXES

 BAP page A-1
 01mar92 Quick Reference

Version 1.0

Appendix A

Quick Reference

 The examples below illustrate the required arrangement of run parameters on
the BAP command line and on the command lines for most of the support programs.
The last of each set of examples is a generic example that shows items the user may
supply in underlined, slanted characters and items the user must supply in double-
underlined, slanted characters. The must-supply items are not required when the
user merely wants to see a short display of information about the program, however:
in that case, just the name of the program should be given on the command line.

 Note that the order in which the BAP command line parameters are given, with
a few exceptions, has no significance. Most of the other AGRAM programs require
that the command line parameters be given in a fixed sequence. Note, too, that $|>
represents the prompt from the PC/DOS or VAX/VMS operating system, while vax$
represents the prompt from the VAX/VMS operating system.

A.1 HELP

$|> help
$|> help tsplot
$|> help hitbeg
$|> help agram
$|> help agram-topics
$|> help topic

A.2 BAP (See Section 4.1)

$|> bap show
$|> bap mydata.smc
$|> bap @runparam.txt
$|> bap mydata.smc, @smc.brp, locut, corner=0.12
$|> bap infile=mydata.bbf, pad, inscor, hicut, &

locut, corner=0.13, fas, done
$|> bap baplocut.bbf, rspec(f,p)
$|> bap data-file-name, step-name(f,p), @file-name &

runparameter-name=runparameter-value

Default BAP run parameter values:

!
! Step names and their associated parameters:
!

 page A-2 BAP
 Quick Reference 01mar92

Version 1.0

INPUT
infile= noname.xxx, infmt= *, motion?= ???, motion= *
convert= 1.00

nointerp
spsin?= 200., spsin= *, spsnew= 200.

nolincor
vline= 0.00, mllsqf= off, mmean= off, beglin= *
endlin= *, begfit= *, endfit= *, tapfit= 0.00

nopad
padsec= *, ktaper= zcross, tapsec= 0.20, jpad= 5

noinscor
period?= *, period= *, damping?= *, damping= *

nohicut
hitbeg?= 15.0, hitbeg= *, hitend?= 20.0, hitend= *

nodecim
ndense= 1

nolocut
corner?= *, corner= *, nroll?= 1, nroll= *, locut2= off

noavd
velfit= off

nofas
nsmooth= 1

norespon
sdamp= 0.00, 0.020, 0.050, 0.100, 0.20
sper= 0.050, 0.100, 0.20, 0.50, 1.00, 2.00, 5.00, 10.0,

15.0
sdper= 0.0050, 0.0100, 0.020, 0.050, 0.100, 0.20, 0.50,

1.00
cliprs= on

!
! output parameters:
!

outfmt= BBF, outdir= [], idc= BAP, warn= stop SHOW= ON
runlbl= *

!
! End of run parameter list.
!
done

A.3 TSPLOT (See Section 7.4)

 There are several different versions of TSPLOT, each distinguished from the
other versions by the first character of the program name, with that first character
indicating the plotting medium. PC versions of TSPLOT are: stsp (screen version)
and ptsp (postscript version). Additional versions available on the USGS VAXes
are: dtsp (meta-plot version that writes plot descriptions to batch.plt files),
ltsp (laser printer version), and itsp (device-independent version).

$|> stsp mydata.bbf
$|> stsp mydata.r01(p),.r02(-15,+25),.r03(30)
$|> stsp mydata.a01,.a02,.a03,topplot.ttl
$|> stsp [agram.testdata]eda.a01,0,15,5, 0.18
$|> stsp bbf-input-file(p), bbf-input-file(#)

bbf-input-file(#,#),
 ... (any number of bbf file names) ...

tbegin,tend,spp,ysize,yspace, flags

where flags are any combination of: nopad, nosync, nocc,
rotate, dots, arrow, circle, nopeak,
nolabels, axesonly, noxlbl,noylbl,
notlbl, noxax, onexax, twoxax, oldxax,
noyax, oneyax, twoyax, seb,
xmargin(#,#), ymargin(#,#), upcase.

 BAP page A-3
 01mar92 Quick Reference

Version 1.0

A.4 FASPLOT (See Section 7.5)

 There are several different versions of FASPLOT just as there are several
different versions of TSPLOT. Versions for PCs are: sfas, and pfas; additional
versions on the USGS VAXes are: dfas, lfas, ifas.

$|> SFAS [agram.testdata]eda.a01
$|> SFAS fromSFAS.txt =pub1:[agram.testdata]eda.r01, &

zcross,smooth, fas,fasi,linlin,loglin,loglog
$|> SFAS mydata.bbf, &

fas, loglog(-3,-,-2,3), fasi, loglog(-3,-,-2,3)
$|> SFAS mydata.bbf, xmargin(0.3,0.9)
$|> SFAS bbf-input-file
$|> SFAS FASfile= bbf-input-file1, bbf-input-file2,

tbeg, tend, options

where options are any combination of: misc-options,
computing-options, plot-axis-options,
plot-title-options, and tsplot-style-
options

misc-options are tsplot or nonoise
computing-options are any combination of:

nsamples(#), datataper(#), zcross,
notaper, smooth, nosmooth, fas, fasi,
fasi2, fasd, fasd2 or fps

plot-axis-options are any combination of: loglog,
loglin, linlog and linlin.

plot-title-options are any combination of: top,
nolabels, notitle or axesonly; or the
name of a text file containing the plot
title.

tsplot-style-options are any combination of:
rotate, xmargin(#,#), ymargin(#,#),
upcase.

A.5 SCRPLOT (See Section 7.1)

$|> SCRPLOT bapplots.aps
vax$ SCRPLOT batch.plt (on USGS VAXes only)
vax$ SCRPLOT (on USGS VAXes only)
$|> SCRPLOT plot-description-file

A.6 SCATTR (See Section G.1)

$|> SCATTR bap.vax
$|> SCATTR pcbap.add
$|> SCATTR output-TOC-file = gathered-input-file

A.7 GATHER (See Section G.1)

$|> GATHER bap.vax = bap.wrk
$|> GATHER pcbap.add = pcbap.wrk
$|> GATHER all.txt = toc.txt
$|> GATHER gathered-output-file = input-TOC-file

 page A-4 BAP
 Quick Reference 01mar92

Version 1.0

A.8 AGRAM Programs that have no PC Version yet:

 The programs listed in this Section are not available with early versions of the
PC distribution diskettes, but they may become available with future updates.

BBFDMP:

vax$ BBFILE mylist.tmp=PUB1:[agram.testdata]eda.r01, 1-4,20
vax$ BBFILE mydata.bbf
vax$ BBFILE text-file= bbf-input-file,block-list

ROTATE:
vax$ ROTATE new1.bbf,90, new2.bbf,180 =old1.bbf, old2.bbf
vax$ ROTATE out-bbf1,dir1,out-bbf2,dir2 =in-bbf1,in-bbf2

or vax$ ROTATE out-bbf1,out-bbf2=in-bbf1,in-bbf2,epilat,epilong

COMBINE:
vax$ COMBINE sum.bbf =a.bbf, b.bbf +
vax$ COMBINE ave.bbf =a.bbf, b.bbf + 2.0 /
vax$ COMBINE diff.bbf=a.bbf, b.bbf - eol
vax$ COMBINE constant.bbf = 3, 5 + 2 /
vax$ COMBINE newfmt.bbf=[agram.testdata]eda.a01, 0.0 +

ddstyle
vax$ COMBINE output-bbf = post-fix-list, options

where options may be: nosync, nocc, agstyle, ag,
ddstyle, dd, dd10, and eol.

EXPORT:
vax$ EXPORT temp.txt= mydata.bbf,dump
vax$ EXPORT newfile.eds=temporary.r01, .r02, .r03, .a01,

.v01, .d01, a02,.v02,.d02,.a03,.v03,.d03,

.ttl, EDIS
vax$ EXPORT outfile=input-bbf-file(s),format

 where format = edis, dump, or beck

IMPORT:

vax$ IMPORT 4scale.bbf =[agram.testdata]elcdamain.but,BUTTER
vax$ IMPORT new. =[agram.testdata]tap154.001,PHASE1
vax$ IMPORT new. =[agram.testdata]gilroy2a.dat, PHASE1
vax$ IMPORT new. =[agram.testdata]cdmgsampl.ph1, CDMGP1
vax$ IMPORT new.r01,.r02,.r03,tmp.tmp= &

[agram.testdata.oldcards]bkyec7.ph1, BKYP1
vax$ IMPORT new. =[agram.testdata]ineltstr.ph0, PHASE2
vax$ IMPORT output-bbf-prefix.= input-text-file, type, skip0

 where type =butter, bky-butter, phase1, bkyp1,
cdmgp1, or phase2

 and skip0 is an extra option that works only with
type=butter.

 BAP page A-5
 01mar92 Quick Reference

Version 1.0

IOMTAP:

vax$ IOMTAP output-binary-file-name = drive,#-#
or vax$ IOMTAP output-binary-file-name = input-file-name

IOMPLOT:

 There are several different versions of IOMPLOT, just as there are for FASPLOT
and TSPLOT. Versions: simp, pimp, dimp, limp, iimp.

vax$ LIMP iomtap-output-binary-file

BUTTER:

vax$ BUTTER (prompts for input)

SCALE:

vax$ SCALE 4hifric.= frombutter.bbf,0.5,1.92,1.85,1.77
vax$ SCALE output-bbf-prefix = butter-output-bbf,

time-tick-butter-file,
time-between-ticks,
sens1,sens2,sens3

HIFRIC:

vax$ HIFRIC 4coravd.g01 =fromscale.r01,.040,.570
vax$ HIFRIC 4coravd.g01 =fromscale.r01,interp
vax$ HIFRIC 4coravd.g01=fromscale.r01,.040,.570,,,40,90,fdic
vax$ HIFRIC output-bbf-file = scale-output-bbf,

period, damping,
sps, ndense, hitbeg, hitend,
non-standard-flag

where non-standard-flag = interp or fdic

CORAVD:

vax$ CORAVD fromcoravd.=fromhifric.c03, 6.0,40.0
vax$ CORAVD fromcoravd.=fromhifric.c03, 0,0, bi,0.17,2
vax$ CORAVD test.=agd:[agram.testdata]eda.g01, -

newproc,0.07,1, zcross(15.)
vax$ CORAVD output-bbf-prefix = hifric-output-bbf,

begfit, endfit, tapfit,
filter-type, filter-parameters,
filter-type, filter-parameters

 where filter-type usually = bi or newproc

 and filter-parameters, when filter-type= bi or
newproc, = corner, nroll, taper-option

BWRITE:

vax$ BWRITE (prompts for input)

 page A-6 BAP
 Quick Reference 01mar92

Version 1.0

 BAP page B-1
 01mar92 Sample BAP Runs

Version 1.0

Appendix B

Two Sample BAP runs

 Results from two sample BAP runs are shown in this Appendix. The input file
for the first example is in SMC-format and the input file for the second example is in
BBF-format. The two input files are included among the BAP distribution files at
\agram\testdata\gilroy21.smc and andds1.bbf.

 The first sample time series was recorded during the 06aug79 Coyote Lake
earthquake at the Gilroy Array #2 site. The time series is the first component
(oriented at 140°) of a three-component record. The second sample time series was
recorded during the 18oct89 Loma Prieta earthquake at the Anderson Dam,
downstream, site. The time series is the first component (oriented at 333° and
indicated as 340° in early publications) of a three-component record.

 The input file for the first example is a copy of the \1979\218r05g0.20a file
from the Strong-Motion CD-ROM1. The input time series is evenly sampled at 200
samples per second, as are almost all the time series on that CD-ROM (a few are
sampled at 10 sps).

 The input file for the second example contains a time series that is unevenly
sampled at more than 600 samples per second. The time series was digitized by the
automatic trace-following laser at LS Associates, then processed through the
AGRAM/BUTTER program and the AGRAM/SCALE program in preparation for
BAP processing. (The BUTTER program butts separately digitized frames together;
the SCALE program scales the digitized samples from microns to seconds in the
abscissas and to cm/sec/sec in the ordinates.) This time series is not included on the
Strong-Motion CD-ROM, which includes no events after 1986.

 The input time series used in the second example is quite long, 27,314 unevenly-
sampled points, and it would be truncated in versions of BAP that have working
arrays of less than 54,628 words. The LOWBAP version of BAP for PCs, for instance,
has relatively small working arrays that can contain only about 16,000 points of an
evenly-sampled time series and only half that many points of an unevenly-sampled
time series.

1 Reference [20], by Seekins and others.

 page B-2 BAP
 Sample BAP Runs 01mar92

Version 1.0

B.1 VAX/VMS Commands

 Figure B.1.a lists the commands in the batch file that was used to run the first
example on a VAX/VMS computer at the USGS. Figure B.1.b lists the corresponding
batch file used to run the second example. Significant differences between the two
files are shown in bold type.

 $set verify
 $on control_Y then goto stopit
 $on warning then goto stopit
 $set def pub4:[scratch.forofr] ! <<< OK here ?
 $!
 $! GILROY21.BAT: (VAX version)
 $! Generate the first test case shown
 $! in Appendix B of the BAP User's Guide.
 $!
 $! The input time series is a copy of the Strong-
 $! Motion CD-ROM file at \1979\218r05g0.20a.
 $! The time series was recorded at
 $! Gilroy Array #2 (Mission Trails Motel),
 $! first component (140'), during the
 $! 06aug79 Coyote Lake EQ.
 $!
 $ bap idc=g1, pub1:[agram.testdata]gilroy21.smc, &
 INPUT(f)
 PAD, ! << pad length will be calculated by BAP.
 INSCOR, ! << period, damping, hitbeg, & hitend
 ! will all come from the ts file.
 LOCUT(f), ! << corner & nroll will come from the ts file.
 AVD(f),
 FAS(p,f),
 RESPON(p,f)
 $!
 $! plot results from the FAS and RESPON steps:
 $!
 $ print g1plots.aps ! = figure B.3.d & e
 $!
 $! plot time series, including pads:
 $!
 $ Ptsp g1inout.bbf,g1acc.bbf,g1vel.bbf,g1dis.bbf,-10,38,48 &
 twoyax,twoxax,nopeak,rotate,
 noylbl,xmargin(-0.01,-0.97), ymargin(-0.03,-0.95)
 $ rename plots.aps g1plots2.aps
 $ print g1plots2.aps ! = figure B.3.a
 $!
 $! plot time series without the pads, 20 seconds per page:
 $!
 $ Ptsp g1acc.bbf,g1vel.bbf,g1dis.bbf, twoyax,twoxax, nopads
 $ rename plots.aps g1plots3.aps
 $ print g1plots3.aps ! = figure B.3.b & c
 $!
 $! end of job.
 $!
 $exit
 $!
 $stopit:
 $write sys$output "STOPPING GILROY21.BAT due to error or control-Y"

 Figure B.1.a: VAX/VMS commands for the first example.

 BAP page B-3
 01mar92 Sample BAP Runs

Version 1.0

 $set verify
 $on control_Y then goto stopit
 $on warning then goto stopit
 $set def pub4:[scratch.forofr] ! <<< OK here ? $!
 $! ANDDS1.BAT: (VAX version)
 $! Generate the second test case shown
 $! in appendix B of the BAP User's Guide.
 $!
 $! The input time series was digitized by the LSA
 $! automatic trace-following laser digitizer and
 $! was recorded at Anderson Dam, downstream, first
 $! component (333'), during the 18oct89 Loma Prieta
 $! EQ.
 $!
 $ bap idc=a1, pub1:[agram.testdata]andds1.bbf, &
 INPUT(f)
 INTERP, spsnew=600 ! <<< only for densely digitized data
 PAD, padsec=20, ktaper=zcross
 INSCOR, period= 0.037, damping= 0.60, hitbeg=50, hitend=100
 DECIM, ndense = 3 ! <<< only for densely digitized data
 LOCUT(f), corner=0.1, nroll=1
 AVD(f),
 FAS(p,f),
 RESPON(p,f)
 $!
 $! plot results from the FAS and RESPON steps:
 $!
 $ print a1plots.aps ! = figures B.4.d & e
 $!
 $! plot time series, including pads:
 $!
 $ Ptsp a1inout.bbf,a1acc.bbf,a1vel.bbf,a1dis.bbf, &
 -20,60,80, twoyax,twoxax,nopeak,rotate,
 noylbl,xmargin(-0.01,-0.97), ymargin(-0.03,-0.95)
 $ rename plots.aps a1plots2.aps
 $ print a1plots2.aps ! = figure B.4.a
 $!
 $! plot time series without the pads, 20 seconds per page:
 $!
 $ Ptsp a1acc.bbf,a1vel.bbf,a1dis.bbf, twoyax,twoxax, nopads
 $ rename plots.aps a1plots3.aps
 $ print a1plots3.aps ! = figure B.4.b & c
 $!
 $! end of job.
 $!
 $exit
 $!
 $stopit:
 $write sys$output "STOPPING ANDDS1.BAT due to error or control-Y"

 Figure B.1.b: VAX/VMS commands for the second example.

 Note the differences between the two sets of commands:

• The second example includes a request to interpolate the densely digitized input
time series to an even 600 samples per second and a request to decimate from 600
to 200 samples per second after the instrument correction step. These steps are
not required, or appropriate, for input time series like that in the first example
that come from the Strong-Motion CD-ROM. The CD-ROM time series are
evenly sampled at 200 samples per second (or less) to begin with.

• The pad length is not specified in the first example but is explicity specified in

the second example. The BAP-calculated pad length of 10 seconds is sufficient in

 page B-4 BAP
 Sample BAP Runs 01mar92

Version 1.0

the first example, but the BAP-calculated pad length of 15 seconds is not
sufficiently long for the second example, so the 20-second pad length must be
specified by the user in the second example.

• The period, damping, hitbeg, hitend, corner, and nroll values are

given explicitly in the second example because the values are not available from
the input time series file used in that example, as they are in the input file for the
first example.

• The transition band for the high-cut filter is different in the two examples: 23 to

25 Hz in the first example (as is indicated in the input file) and 50 to 100 Hz in
the second example (as is explicitly indicated in the BAP run parameters list).
Refer to Section 5.2 of Chapter 5 for more information.

• The corner frequency for the low-cut filter is different in the two examples: 0.15

Hz in the first example (as is indicated in the input file), and 0.1 Hz in the second
example (as is explicitly indicated in the BAP run parameters list). The
appropriate value for this parameter will vary with each individual record. Refer
to Section 5.6 of Chapter 5 for more information.

B.2 PC/DOS Commands
B.2.a PC/DOS Commands for the First Example

 The following commands, similar to those shown in Figure B.1.a, could be typed
in response to the DOS prompt (shown as "dos>" here) to run the first example on a
PC/DOS machine:

 dos> bap idc=g1, pub1:[agram.testdata]gilroy21.smc, &
 INPUT(f), PAD, INSCOR, LOCUT(f),
 AVD(f), FAS(p,f), RESPON(p,f),
 DONE
 dos> print g1plots.aps
 dos> Ptsp g1inout.bbf,g1acc.bbf,g1vel.bbf,g1dis.bbf,-10,38,48 &
 twoyax,twoxax,nopeak,rotate,
 noylbl,xmargin(-0.01,-0.97), ymargin(-0.03,-0.95)
 done
 dos> rename plots.aps g1plots2.aps
 dos> print g1plots2.aps
 dos> Ptsp g1acc.bbf,g1vel.bbf,g1dis.bbf, twoyax,twoxax, nopads
 dos> rename plots.aps g1plots3.aps
 dos> print g1plots3.aps

 It is usually more convenient to run a rather long set of commands like these
from a "batch" file (a .bat file) rather than to type them in at the DOS prompt. The
contents of a batch file can be rerun repeatedly, with the user modifying the batch file
between runs. Unfortunately, the "&" symbol cannot be used at the end of a long
DOS command line within a batch file to request that DOS continue reading from the
next line in the batch file, so DOS commands in batch files are limited to just one line
each. The BAP run parameters list will often be too long to fit within the 128-
character DOS command line limit: although the run parameter list in this first
example would fit on one line, the run parameter list for the second example would
not fit. A user wishing to run something like these examples from a batch file would
need to use a separate @-file to contain the run parameters that would not fit on the
BAP command line. The same is true for the information on the first PTSP command
line in the examples. The gilroy21.bat file that is distributed with the BAP
software illustrates how this can be done. The following is a simplified version (error
handling removed) of gilroy21.bat:

 BAP page B-5
 01mar92 Sample BAP Runs

Version 1.0

:
 : Gilroy21.bat: (PC version)
 : generate the Gilroy Array #2 test case shown
 : in appendix B of the BAP User's Guide.
 :
 BAP idc=g1, c:\agram\testdata\gilroy21.smc, @gilroy21.brp
 print g1plots.aps
 PTSP g1inout.bbf,g1acc.bbf,g1vel.bbf,g1dis.bbf, @a.tsp
 rename plots.aps one.aps
 print one.aps
 PTSP g1acc.bbf,g1vel.bbf,g1dis.bbf, twoyax,twoxax, nopads
 print plots.aps

Note the "@gilroy21.brp" on the BAP command line and the "@a.tsp" on the
first PTSP command in gilroy21.bat. Each @-sign indicates a file that contains
additional input parameters. The contents of the gilroy21.brp file are:

 INPUT(f)
 PAD, ! << pad length will be calculated by BAP.
 INSCOR, ! << period, damping, hitbeg, & hitend
 ! will all come from the ts file.
 LOCUT(f), ! << corner & nroll will come from the ts file.
 AVD(f),
 FAS(p,f),
 RESPON(p,f)

And the contents of the a.tsp file referenced from the first PTSP command line
are:

 twoyax,twoxax,nopeak,noylbl,portrait,
 xmargin(-0.01,-0.97), ymargin(-0.03,-0.95)

B.2.b PC/DOS Commands for the Second Example

 The andds1.bat file that is distributed with the BAP software illustrates how
the second example could be executed from a PC/DOS batch file. The following is a
simplified version of andds1.bat:

 :
 : ANDDS1.BAT: (PC version)
 : generate the Anderson downstream test case shown
 : in appendix B of the BAP User's Guide.
 :
 BAP idc=a1, c:\agram\testdata\andds1.bbf, @andds1.brp
 print a1plots.aps
 PTSP a1inout.bbf,a1acc.bbf,a1vel.bbf,a1dis.bbf, -50,100,150, @a.tsp
 rename plots.aps one.aps
 print one.aps
 PTSP a1acc.bbf,a1vel.bbf,a1dis.bbf, twoyax,twoxax, nopads
 print plots.aps

Where contents of the andds.brp file referenced on the BAP command line are:

 INPUT(f)
 INTERP, spsnew=600 ! <<< only for densely digitized data
 PAD, padsec=20, ktaper=zcross
 INSCOR, period= 0.037, damping= 0.60, hitbeg=50, hitend=100
 DECIM, ndense = 3 ! <<< only for densely digitized data
 LOCUT(f), corner=0.1, nroll=1
 AVD(f),
 FAS(p,f),
 RESPON(p,f)

And the a.tsp file referenced on the first PTSP command line is the same a.tsp
file listed in Section B.2.a:

 twoyax,twoxax,nopeak,noylbl,portrait,
 xmargin(-0.01,-0.97), ymargin(-0.03,-0.95)

 page B-6 BAP
 Sample BAP Runs 01mar92

Version 1.0

B.3 Results from the First Example

 The plots generated when the commands shown in Figure B.1.a were invoked
are shown in Figures B.3.a through B.3.e. Figure B.3.a shows the plot generated by
the first PTSP command: the entire input time series plus the resulting corrected
acceleration, velocity, and displacement time series, including leading and trailing
pads, are shown on a single page. Figures B.3.b and .c show the two plots generated
by the second PTSP command. This plot is similar to the time series plots presented
in the data reports published by the USGS: the corrected acceleration, velocity, and
displacement time series are shown without the leading or trailing pads and with 20
seconds of motion on each page. Figures B.3.d and B.3.e show the two plots
described in the g1plots.aps file that was generated by the BAP command. The
plot in Figure B.3.d shows the Fourier amplitude spectrum of the acceleration time
series; it was requested via the FAS(p) statement in the BAP run parameters list.
The plot in figure B.3.e shows response spectra for 5 different damping fractions; it
was requested via the RESPON(p) statement in the BAP run parameters list.

 The run messages BAP generated as it was executing this first (gilroy21)
example were displayed on the user's screen and were also copied to the file named
g1run.msg. Here follows a print-out of the g1run.msg file:

 BAP, Basic Accelerogram Processing Program, 10may92 version.

 IDC = G1, Run time =11may92@10:33:43

 Input time-series file = PUB1:[AGRAM.TESTDATA]GILROY21.SMC

 Directory to contain output files = []

 INPUT time series (input format = SMC)
 =================
 Characteristics of the input time series:
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 239.95 3.2200 645
 Min. acceleration = -249.62 3.6550 732
 First sample = -2.8439 0.00000E+00 1
 Last sample = -1.7474 26.855 5372
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 G1INOUT.BBF

 PADding step, Part 1 (jpad=5, ktaper=zcross)
 ============
 BAP-calculated leading pad length= 10. seconds.
 BAP-calculated trailing pad length= 10. seconds.
 Length of preliminary pads for the HICUT filter= 2.0 seconds.
 The time series has been extended with 400 leading zeros.
 In addition, the first 3 input samples were reset
 to zero.
 The time series has been extended with 400 trailing zeros.
 In addition, the last 8 input samples were reset
 to zero.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 239.95 3.2200 1045
 Min. acceleration = -249.62 3.6550 1132
 First pad sample = 0.00000E+00 -2.0000 1
 First data sample = 0.00000E+00 0.00000E+00 401
 Last data sample = 0.00000E+00 26.855 5772
 Last pad sample = 0.00000E+00 28.855 6172
 Sampling interval = 5.00000E-03

 INStrument CORrection and HIgh-CUT filter steps
 ===
 Instrument period = 0.038 seconds,

 BAP page B-7
 01mar92 Sample BAP Runs

Version 1.0

 Instrument damping fraction = 0.600 of critical damping,
 Filter transition band = 23.0 to 25.0 Hz.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 236.51 3.2050 1042
 Min. acceleration = -250.03 3.6450 1130
 First pad sample = 5.72205E-05 -2.0000 1
 First data sample = -0.23041 0.00000E+00 401
 Last data sample = 2.78170E-02 26.855 5772
 Last pad sample = -1.90735E-06 28.855 6172
 Sampling interval = 5.00000E-03

 PADding step, Part 2 (jpad=4, using zcross on existing pad)
 ============
 The time series has been extended with 1600 leading zeros.
 The time series has been extended with 1600 trailing zeros.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 236.51 3.2050 2642
 Min. acceleration = -250.03 3.6450 2730
 First pad sample = 0.00000E+00 -10.000 1
 First data sample = -0.23041 0.00000E+00 2001
 Last data sample = 2.78170E-02 26.855 7372
 Last pad sample = 0.00000E+00 36.855 9372
 Sampling interval = 5.00000E-03

 LOCUT filter step (corner= 0.15, nroll= 1)
 =================
 Filter the acceleration time series with a low-cut,
 bi-directional Butterworth filter having corner frequency
 at 0.150 Hz and rolloff parameter = 1. (Note that rolloff
 parameter= 1 is also known as a rolloff "order" of 2.)
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 235.79 3.2050 2642
 Min. acceleration = -250.49 3.6450 2730
 First pad sample = -1.26688E-04 -10.000 1
 First data sample = -0.33074 0.00000E+00 2001
 Last data sample = 0.23881 26.855 7372
 Last pad sample = 3.89814E-04 36.855 9372
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 G1ACC.BBF

 AVD step
 ========
 Integrate the acceleration time series once to calculate
 velocity, twice to calculate displacement.

 Velocity:
 cm/sec seconds sample #
 ---------- ------- --------
 Max. velocity = 31.916 3.5700 2715
 Min. velocity = -28.590 3.0200 2605
 First pad sample = -3.16720E-07 -10.000 1
 First data sample = -8.93613E-02 0.00000E+00 2001
 Last data sample = -0.17900 26.855 7372
 Last pad sample = 7.31175E-05 36.855 9372
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 G1VEL.BBF

 Displacement:
 cm seconds sample #
 ---------- ------- --------
 Max. displacement = 2.3500 4.0250 2806
 Min. displacement = -5.5289 3.2250 2646
 First pad sample = -7.91801E-10 -10.000 1
 First data sample = -1.80094E-02 0.00000E+00 2001
 Last data sample = 3.38164E-02 26.855 7372
 Last pad sample = 3.43564E-03 36.855 9372
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 G1DIS.BBF

 FAS step
 ========
 Calculate Fourier amplitude spectrum of acceleration.
 The time series has been extended with 7012 trailing
 zeros so the total number of samples is an integral power
 of 2 (= 16384) as is required for the FFT used in the

 page B-8 BAP
 Sample BAP Runs 01mar92

Version 1.0

 Fourier amplitude spectrum calculations.
 The 16384 time-series samples have been transformed to 8193
 complex samples in the frequency domain.
 cm/sec Hz. sample #
 ---------- ------- --------
 Maximum amplitude = 121.24 1.1108 92
 Minimum amplitude = 0.00000E+00 89.099 7300
 First sample = 7.26318E-05 0.00000E+00 1
 Last sample = 2.44141E-06 100.00 8193
 Sampling interval = 1.22070E-02
 Plot Fourier Amplitude Spectrum in agram postscript format to
 PUB4:[SCRATCH.FOROFR]G1PLOTS.APS;6
 Output Fourier amplitude file format = BAP text, file name =
 G1FAS.TXT

 RESPON step
 ==========
 Calculate response spectra from the acceleration time series.
 Number of points in each spectrum = 86 (= # of period values).
 Number of spectra = 5 (= # of damping values).
 Period values = 0.050 0.055 0.060 0.065 0.070
 0.075 0.080 0.085 0.090 0.095
 0.100 0.110 0.120 0.130 0.140
 0.150 0.160 0.170 0.180 0.190
 0.200 0.220 0.240 0.260 0.280
 0.300 0.320 0.340 0.360 0.380
 0.400 0.420 0.440 0.460 0.480
 0.500 0.550 0.600 0.650 0.700
 0.750 0.800 0.850 0.900 0.950
 1.000 1.100 1.200 1.300 1.400
 1.500 1.600 1.700 1.800 1.900
 2.000 2.200 2.400 2.600 2.800
 3.000 3.200 3.400 3.600 3.800
 4.000 4.200 4.400 4.600 4.800
 5.000 5.500 6.000 6.500 7.000
 7.500 8.000 8.500 9.000 9.500
 10.000 11.000 12.000 13.000 14.000
 15.000
 Damping = 0.000
 0.020
 0.050
 0.100
 0.200
 Output response spectra file format = BAP text, file name =
 G1RESPON.TXT
 Plot Response Spectra in agram postscript format to
 PUB4:[SCRATCH.FOROFR]G1PLOTS.APS;6

 DONE.
 =====

 BAP page B-9
 01mar92 Sample BAP Runs

Version 1.0

Figure B.3.a

 page B-10 BAP
 Sample BAP Runs 01mar92

Version 1.0

Figure B.3.b

Figure B.3.c

 BAP page B-11
 01mar92 Sample BAP Runs

Version 1.0

Figure B.3.d

Figure B.3.e

 page B-12 BAP
 Sample BAP Runs 01mar92

Version 1.0

B.4 Results from the Second Example

 The plots generated when the commands in Figure B.2.b were invoked are
shown in Figures B.4.a through B.4.e. Figure B.4.a shows the plot generated by the
first PTSP command: the entire input time series plus the resulting corrected
acceleration, velocity, and displacement time series, including leading and trailing
pads, are shown on a single page. Figures B.4.b and B.4.c show the two plot pages
generated by the second PTSP command. These plots are similar to the time series
plots presented in the data reports published by the USGS: the corrected
acceleration, velocity, and displacement time series are shown without the leading or
trailing pads and with 20 seconds of motion on each page. Figures B.4.d and B.4.e
show the two plots described in the a1plots.aps file that was generated by the
BAP command. The plot in Figure B.3d shows the Fourier amplitude spectrum of
the acceleration time series; it was requested via the FAS(p) statement in the BAP
run parameters list. The plot in figure B.4.e shows response spectra for 5 different
damping fractions; it was requested via the RESPON(p) statement in the BAP run
parameters list.

 The run messages BAP generated as it was executing this second (andds1)
example were displayed on the user's screen and were also copied to the file named
a1run.msg. Here follows a print-out of the a1run.msg file:

 BAP, Basic Accelerogram Processing Program, 10may92 version.

 IDC = A1, Run time =11may92@10:48:39

 Input time-series file = PUB1:[AGRAM.TESTDATA]ANDDS1.BBF

 Directory to contain output files = []

 INPUT time series (input format = BBF)
 =================
 Characteristics of the input time series:
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 240.11 7.6718 5178
 Min. acceleration = -243.00 7.8707 5310
 First sample = 3.4369 0.00000E+00 1
 Last sample = -5.6083 39.748 27314
 Unevenly sampled. -
 Output time series data file format = BBF, file name =
 A1INOUT.BBF

 INTERP, interpolation step (spsin=*, spsnew=600)
 ==========================
 Interpolate (x,y) data to 600 samples per second:
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 240.04 7.6717 4604
 Min. acceleration = -242.82 7.8717 4724
 First sample = 3.4369 0.00000E+00 1
 Last sample = -5.6088 39.748 23850
 Sampling interval = 1.66667E-03

 PADding step, Part 1 (jpad=5, ktaper=zcross)
 ============
 User-requested leading pad length= 20. seconds.
 User-requested trailing pad length= 20. seconds.
 Length of preliminary pads for the HICUT filter= 2.0 seconds.
 The time series has been extended with 1200 leading zeros.
 In addition, the first 4 input samples were reset
 to zero.
 The time series has been extended with 1200 trailing zeros.
 In addition, the last 341 input samples were reset
 to zero.
 cm/sec/sec seconds sample #

 BAP page B-13
 01mar92 Sample BAP Runs

Version 1.0

 ---------- ------- --------
 Max. acceleration = 240.04 7.6717 5804
 Min. acceleration = -242.82 7.8717 5924
 First pad sample = 0.00000E+00 -2.0000 1
 First data sample = 0.00000E+00 0.00000E+00 1201
 Last data sample = 0.00000E+00 39.748 25050
 Last pad sample = 0.00000E+00 41.748 26250
 Sampling interval = 1.66667E-03

 INStrument CORrection and HIgh-CUT filter steps
 ===
 Instrument period = 0.037 seconds,
 Instrument damping fraction = 0.600 of critical damping,
 Filter transition band = 50.0 to 100.0 Hz.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 238.26 7.6717 5804
 Min. acceleration = -238.38 7.8617 5918
 First pad sample = 2.38419E-07 -2.0000 1
 First data sample = -0.25486 0.00000E+00 1201
 Last data sample = -2.54502E-06 39.748 25050
 Last pad sample = -2.31806E-08 41.748 26250
 Sampling interval = 1.66667E-03

 DECIMate, decimation step (ndense= 3)
 =========================
 Remove 2 of every 3 samples to reduce the sampling
 rate to 200.000 samples per second.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 237.86 7.6700 1935
 Min. acceleration = -237.64 7.8650 1974
 First pad sample = 2.38419E-07 -2.0000 1
 First data sample = -0.25486 0.00000E+00 401
 Last data sample = -4.25649E-07 39.745 8350
 Last pad sample = 3.28096E-08 41.745 8750
 Sampling interval = 5.00000E-03

 PADding step, Part 2 (jpad=4, using zcross on existing pad)
 ============
 The time series has been extended with 3600 leading zeros.
 The time series has been extended with 3600 trailing zeros.
 In addition, the last 3 samples of the existing
 trailing pad were reset to zero.
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 237.86 7.6700 5535
 Min. acceleration = -237.64 7.8650 5574
 First pad sample = 0.00000E+00 -20.000 1
 First data sample = -0.25486 0.00000E+00 4001
 Last data sample = -4.25649E-07 39.745 11950
 Last pad sample = 0.00000E+00 59.745 15950
 Sampling interval = 5.00000E-03

 LOCUT filter step (corner= 0.1, nroll= 1)
 =================
 Filter the acceleration time series with a low-cut,
 bi-directional Butterworth filter having corner frequency
 at 0.100 Hz and rolloff parameter = 1. (Note that rolloff
 parameter= 1 is also known as a rolloff "order" of 2.)
 cm/sec/sec seconds sample #
 ---------- ------- --------
 Max. acceleration = 236.32 7.6700 5535
 Min. acceleration = -239.09 7.8650 5574
 First pad sample = -5.03567E-05 -20.000 1
 First data sample = -6.04142E-02 0.00000E+00 4001
 Last data sample = -0.18701 39.745 11950
 Last pad sample = 7.65612E-05 59.745 15950
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 A1ACC.BBF

 AVD step
 ========
 Integrate the acceleration time series once to calculate
 velocity, twice to calculate displacement.

 Velocity:
 cm/sec seconds sample #
 ---------- ------- --------
 Max. velocity = 19.198 8.4150 5684

 page B-14 BAP
 Sample BAP Runs 01mar92

Version 1.0

 Min. velocity = -18.528 3.8900 4779
 First pad sample = -1.25892E-07 -20.000 1
 First data sample = -0.21296 0.00000E+00 4001
 Last data sample = 0.27848 39.745 11950
 Last pad sample = 2.05285E-05 59.745 15950
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 A1VEL.BBF

 Displacement:
 cm seconds sample #
 ---------- ------- --------
 Max. displacement = 6.6759 3.5050 4702
 Min. displacement = -5.5133 6.3350 5268
 First pad sample = -3.14730E-10 -20.000 1
 First data sample = -0.97244 0.00000E+00 4001
 Last data sample = -0.15190 39.745 11950
 Last pad sample = 1.57040E-03 59.745 15950
 Sampling interval = 5.00000E-03
 Output time series data file format = BBF, file name =
 A1DIS.BBF

 FAS step
 ========
 Calculate Fourier amplitude spectrum of acceleration.
 The time series has been extended with 434 trailing
 zeros so the total number of samples is an integral power
 of 2 (= 16384) as is required for the FFT used in the
 Fourier amplitude spectrum calculations.
 The 16384 time-series samples have been transformed to 8193
 complex samples in the frequency domain.
 cm/sec Hz. sample #
 ---------- ------- --------
 Maximum amplitude = 245.09 1.6235 134
 Minimum amplitude = 8.84059E-06 99.939 8188
 First sample = 2.07520E-05 0.00000E+00 1
 Last sample = 8.81958E-05 100.00 8193
 Sampling interval = 1.22070E-02
 Plot Fourier Amplitude Spectrum in agram postscript format to
 PUB4:[SCRATCH.FOROFR]A1PLOTS.APS;5
 Output Fourier amplitude file format = BAP text, file name =
 A1FAS.TXT

 RESPON step
 ==========
 Calculate response spectra from the acceleration time series.
 Number of points in each spectrum = 86 (= # of period values).
 Number of spectra = 5 (= # of damping values).
 Period values = 0.050 0.055 0.060 0.065 0.070
 0.075 0.080 0.085 0.090 0.095
 0.100 0.110 0.120 0.130 0.140
 0.150 0.160 0.170 0.180 0.190
 0.200 0.220 0.240 0.260 0.280
 0.300 0.320 0.340 0.360 0.380
 0.400 0.420 0.440 0.460 0.480
 0.500 0.550 0.600 0.650 0.700
 0.750 0.800 0.850 0.900 0.950
 1.000 1.100 1.200 1.300 1.400
 1.500 1.600 1.700 1.800 1.900
 2.000 2.200 2.400 2.600 2.800
 3.000 3.200 3.400 3.600 3.800
 4.000 4.200 4.400 4.600 4.800
 5.000 5.500 6.000 6.500 7.000
 7.500 8.000 8.500 9.000 9.500
 10.000 11.000 12.000 13.000 14.000
 15.000
 Damping = 0.000
 0.020
 0.050
 0.100
 0.200
 Output response spectra file format = BAP text, file name =
 A1RESPON.TXT
 Plot Response Spectra in agram postscript format to
 PUB4:[SCRATCH.FOROFR]A1PLOTS.APS;5

 DONE.
 =====

 BAP page B-15
 01mar92 Sample BAP Runs

Version 1.0

Figure B.4.a

 page B-16 BAP
 Sample BAP Runs 01mar92

Version 1.0

Figure B.4.b

Figure B.4.c

 BAP page B-17
 01mar92 Sample BAP Runs

Version 1.0

Figure B.4.d

Figure B.4.e

 page B-18 BAP
 Sample BAP Runs 01mar92

Version 1.0

 BAP page C-1
 01mar92 Run Times

Version 1.0

Appendix C

Run Times

 The table below shows the time required to run abbreviated versions (no plots,
few output files) of the examples shown in Appendix B on several different
computers. The time required to compile and link the BAP program and the time
required to compile and build the AGRAMLIB subroutine library are also shown.
Times are given in minutes and seconds, in the form minutes:seconds.

 run run compile compile
 Appendix Appendix & &
 B #1 B #2 link build
 example example BAP AGRAMLIB

VAX 3300, VMS version 5.4 2:39 4:19 2:43 3:02

VAX 8250, VMS version 5.0 4:38 8:46 4:47 5:43

25MHz 80486 PC 1,2
 Lahey Fortran compiler 1:49 2:60 5 1:55 1:63
 Microsoft Fortran compiler 2:13 none 4 3:33 7:62

25MHz 80386 PC 1,2
 Lahey Fortran compiler 6:43 11:22 5 2:50 3:31
 Microsoft Fortran compiler 7:36 none 4 4:58 11:37

12MHz 80286 PC/AT 1,3
 Microsoft Fortran compiler ? 6 none 4 ? 6 ? 6

Notes:
1: Each of the PCs used for the timing tests included a math coprocessor; none of the

PCs included a RAM cache or disk cache.
2: Run times on the 80486 and 80386 computers are shown for two different Fortran

compilers: version 5.1 of the Microsoft compiler and version 4.02 of the Lahey
F77L-EM/32 compiler. The Microsoft compiler generates code that runs in real
mode and uses segmented, 16-bit addresses. The Lahey compiler generates code
that runs in protected mode and uses flat, 32-bit addresses. The bap.exe file
that is distributed on PC diskettes was built with the Lahey compiler; the

 page C-2 BAP
 Run Times 01mar92

Version 1.0

lowbap.exe file and all the .exe files for the support programs were built with
the Microsoft compiler.

3: Run times for the 80286 computer are shown merely to illustrate that the BAP
program requires faster machines to run in a reasonable length of time. The .exe
files given in the PC BAP distribution set will not run on these computers. The 32-
bit version of the Lahey compiler (the F77L-32/EM compiler) will not generate
code for 80286 or 8086 computers. Although the Microsoft compiler can generate
code for 80286s and 8086s, such code is not included among the BAP distribution
files.

4: The Microsoft-compiled version of BAP (lowbap.exe) limits (truncates) the time
series it can deal with to 16K samples; that's 80 seconds of an evenly-sampled,
200-sample-per-second time series. This is not long enough to handle the padded
time series used in the second Appendix B example.

5: Most the time spent running the two Appendix B examples is spent in the RESPON
step. The RESPON calculations make heavy use of floating-point functions, which
are more efficient on 80486 computers than on 80386 computers.

6: These test cases have not been run on a 286 yet. Once the information is available,
it will be given in the bapinfo.txt file (see Appendix D).

 BAP page D-1
 01mar92 Acquiring BAP Software

Version 1.0

Appendix D

Acquiring the BAP software

 The preliminary version of PC/BAP and its support programs is distributed on
3.5-inch, 1.44M PC diskettes as Open-File Report # 92-296B by the Open-File Reports
Section of the USGS. The telephone and mailing address for the Open-File Reports
Section are given on the back of the title page of this report. Future versions of the
programs will probably be distributed by other means, however (see Reference [23]).
Users can receive information about the current status of the programs and their
distribution methods by requesting a print-out of the current version of
bapinfo.txt from the author of this report. The bapinfo.txt file will provide
information about the current version of BAP, its support programs, documentation,
and availability that is not covered in this report. To request a print-out of
bapinfo.txt, send a self-addressed envelope to the author at the address given on
the preface page. U.S. residents please add postage (2 first-class stamps) to the
envelope.

 Source code for BAP and its support programs is available for other-than-PC
computers on 9-track tape. Until such time as 9-track tape copies of the software are
available from formal distribution sources, users may request a copy from the
author. A 9-track tape and a return mailing label should be mailed with such a
request. Note that the files distributed on 9-track tape include source code only, in
contrast to the PC distribution diskettes, which contain executable files as well as
source code.

 BAP is a new program and will almost certainly be updated in the future if the
USGS allocates time and funding to the effort. An update history is included in the
bapinfo.txt file, so it is important for users to request a current copy of
bapinfo.txt periodically. The bapinfo.txt file may be posted on a computer-
based bulletin board eventually, if there is sufficient interest, but at present it is only
available by requesting a print-out from the author by mail. Some of the additions
that might be made to the software include:

• PC versions of all the support programs listed in Chapter 6.

• Versions of the programs for UNIX and MAC machines.

• A version of the FASPLOT program that does not restrict (truncate) its input time

series to 16,000 samples or less. The present versions of all the support programs,
including FASPLOT, are 16-bit, real-mode programs that must run within the
640K memory limit imposed by the DOS operating system. A 32-bit version of

 page D-2 BAP
 Acquiring BAP Software 01mar92

Version 1.0

FASPLOT should be provided that makes use of the same DOS-extending
software as is used by the BAP program. (The support programs were created
with the Microsoft Fortran compiler; BAP was created with the Lahey F77L-
32/EM compiler.)

• A program named RSPLOT that will plot pseudo-velocity response spectra in tri-

partite axes, given a baprspec.txt file generated by the BAP/RSPEC step. The
program should provide various other response spectra plotting options too.

• More accurate integration and differentiation algorithms in the AVD step.

• More formats for the BAP input and output time-series data files or more

reformatting functions in the IMPORT and EXPORT programs. The file format
used for the data presented in Reference [15] (digital recordings of Loma Prieta
after-shocks), should be among those BAP or IMPORT/EXPORT can accept.
Formats used by the software associated with references [22] through [25] should
also be acceptable to BAP or IMPORT/EXPORT.

• More flexibility in the plotting options in BAP.

• Better character positioning in the PC screen plots.

• Include VAX screen-plotting software with the VAX/BAP distribution files.

• Plot description files in HPGL format, the format suited to Hewlett-Packard

Laserjet printers, in addition to the PostScript format that is available now.

• Faster PostScript file processing. And the .aps PostScript file format should be

modified so the PostScript plot information files can be incorporated into Word
Perfect documents, as they were into this document, which was formatted by
Microsoft Word. (See sample plots in Chapter 5.)

 BAP page E-1
 01mar92 Installing PC BAP

Version 1.0

Appendix E

Installing BAP on IBM Personal Computers and Clones

 PC/BAP and its support programs require an IBM-style PC or "clone" having
an 80386 CPU (or an upward-compatible CPU such as an 80486); an 80387 math
coprocessor; and 3M bytes or more of RAM. Other required characteristics of the
computer are listed in Section 1.4 of Chapter 1.

 The software is distributed for PCs in self-extracting archive files on 3.5", 720K
floppy diskettes. (See Appendix D for information about BAP distribution methods.)
The number and names of the files in the distribution set will vary, depending on
when and from where they were acquired, but at the time this is written, there are six
distribution files:

 File name Contents
 bapinfo.txt general information. (text file)
 bapinfo.ps PostScript version of bapinfo.txt. (text file in PostScript

format)
 bapexes1.exe BAP and LOWBAP executable files. (archive file)
 bapexes2.exe executable files for the support programs. (archive file)
 bapaux.exe auxiliary files such as the help file, examples, test data, and

miscellaneous documentation. (archive file)
 bapcode.exe the Fortran code and related files that were used to create the

executable files. (archive file)

The number of distribution files and the names of the files, other than
bapinfo.txt, will change as the software evolves, so it is important that users
refer to the list of file names given in bapinfo.txt rather than the list given here
when they prepare to install BAP and related programs. The bapinfo.txt file
may provide a variety of information, in addition to the names of the distribution
files, that is more current than that given here.

 Bapinfo.txt is a plain ASCII text file: It can be read with a text editor, or
displayed with the DOS type command. Bapinfo.ps is the PostScript
counterpart to bapinfo.txt: It can be printed on a PostScript printer. The .exe
distribution files are self-extracting archive files: They contain a compact collection
of other files that will be generated on the user's current disk and directory when the
user types the name of the file at the DOS prompt. Note, however, that the user
should usually type the "-d" and "-o" switches after the name of a self-extracting
archive file when extracting the component files. Example:

 page E-2 BAP
 Installing PC BAP 01mar92

Version 1.0

 dos> a:bapexes1 -d -o

The "-d" requests that component files be copied from the archive file into
subdirectories below the current directory. The "-o" requests that any component
file from the archive that has the same name as an existing file in the target directory
will over-write the existing file.

E.1 Installation Overview

 A brief overview of the installation process is given in this Section. These
instructions should be adequate for many users, but they are presented as though the
user wishes to install the software on the c: drive, that the distribution diskettes are
inserted in the b: drive, that the computer uses a VGA or CGA video system, and
that the computer's extended memory is not currently in use as a RAM drive or disk
cache. More flexible and detailed instructions are given in the next Section.

 To install the software, first create a directory named \agram\ just below the
root of the c: drive and set your current directory to be the newly-created
c:\agram\ directory:

 dos> c: (set the current drive to c:)
 dos> md \agram (create the \agram\ directory)
 dos> cd \agram (set the current directory to \agram\)

Next, transfer the component files from the self-extracting distribution archive files in
the b: drive to subdirectories below the new c:\agram\ directory. Insert the
appropriate diskette into the b: drive as needed and use the following commands:

 dos> b:bapexes1 -d -o (the -d is important!)
 dos> b:bapexes2 -d -o
 dos> b:bapaux -d -o
 dos> b:bapcode -d -o (this one is optional)
 dos> dir (use this just to check that you remembered

to type the -d on the above commands: if
so, the current directory will contain
subdirectories rather than files.)

Invoke the agram setup commands in the c:\agram\examples\4agram.bat
file (you must do this every time you power up your computer, before you can use
BAP or any of its support programs):

 dos> c:\agram\examples\4agram.bat

That's all there is to it! You may want to verify that all has been installed properly by
following some of the examples given in Section E.3, however. And you should
probably skim though the information in Section E.2 even if the instructions in this
Section were sufficient to allow you to install the software successfully.

 BAP page E-3
 01mar92 Installing PC BAP

Version 1.0

E.2 Installation steps

1) Read the bapinfo.txt file.
 A copy of bapinfo.txt will be on the first diskette in the distribution set. It

may contain instructions more recent than those given here. If the first diskette is
inserted in drive b:, you can read bapinfo.txt by typing:

 dos> type b:bapinfo.txt | more

 then pressing the space bar whenever you are ready to see the next screen full of

text.

 The instructions that follow show b: as the designator for the drive that

contains the distribution diskettes. The b: should be replaced with the
designator for the drive in which you have actually placed those files, drive a:
perhaps.

 If you would rather read bapinfo.txt on paper rather than on the screen, you

can print the information on a PostScript printer with:

 dos> print b:bapinfo.ps (note the .ps)

 If your printer is not a PostScript printer, use:

 dos> print b:bapinfo.txt (note the .txt)

2) Set the "current" drive.
 Set the current drive to be the drive on which you want to install the programs

and related files. This drive should be a partition of a hard disk, rather than a
floppy disk drive. To set the current drive to the c: drive, for instance, type
"c:" at the DOS prompt:

 dos> c:

 The instructions that follow show c: as the current drive. The c: should be

replaced with the designator for the drive on which you actually want the
programs and related files to be installed, m: perhaps.

3) Verify that there is enough space on the hard disk.
 Use the dir command to verify that there is enough space on the current drive

for the new files you are about to copy to the disk:

 dos> dir

 The last line of the dir display will show the number of bytes of unused space

available on the drive. The bapinfo.txt file will indicate how many bytes are
required for the BAP files, but at the time this is written, 5.5M bytes are required
for all the BAP files and 3.5M bytes are required if the source files (the Fortran
code and related files from the bapcode.exe file) are not included.

4) Set your "current" directory to be the parent directory for the new files.
 Create a directory to serve as the parent directory for the new files and

subdirectories, if the appropriate directory does not already exist. It is preferable
that this directory be reserved for the BAP distribution files and that it not be
used for any other files. If so, the contents of the directory can be deleted and
reloaded whenever new versions of the BAP distribution files become available.

 page E-4 BAP
 Installing PC BAP 01mar92

Version 1.0

 To create a directory named agram below the root directory of the current drive,
type:

 dos> md \agram (Note that there is no trailing
 backslash here.)

 The instructions that follow show c:\agram\ as the parent directory for the

new files. The \agram\ characters should be replaced with the name of the
directory in which you actually want the programs and related files to be
installed, \pgms\usgs\bapstuff\ perhaps. It is best to use agram as the
parent directory name, however, for \agram\ is indicated throughout this
report, the help file, and the diagnostic messages as the parent directory for BAP
and AGRAM-related files. The name used is "AGRAM" rather than "BAP" for
consistency with the way the files are arranged on the USGS computers, where
BAP is a member of a group of programs collectively called AGRAM programs.

 If the c:\agram\ directory already exists -- because you are installing an

updated version of the software, perhaps -- it is best to delete all the files in the
directory and in all its subdirectories before proceding to install the new version
of the sofware. (It is not mandatory, however.)

 Next, set your current directory to be the new (or newly emptied) directory. To

set your current directory to \agram\, type:

 dos> cd \agram

5) Transfer the new files from the diskettes to your hard disk.
 Each distribution diskette will contain one or more of the .exe files indicated

on the first page of this Appendix. For each diskette, insert the diskette into
drive b:, use the DIR command to learn the name(s) of the .exe file(s) on the
diskette, then transfer the component files from the .exe file(s) on diskette to
your hard disk:

 dos> dir b:*.exe
 dos> b:whatever -d -o

 where whatever is the name of an .exe file currently in the b: drive. If the

DIR command showed that the diskette in b: contained the file named
bapexes1.exe, for example, then you would use:

 dos> b:bapexes1 -d -o

 to do the transfer. If the floppies are inserted, as needed, into drive b:, you will

use (in no particular order):

 dos> b:bapexes1 -d -o (the -d is important!)
 dos> b:bapexes2 -d -o
 dos> b:bapaux -d -o

 And, if you want the Fortran code:

 dos> b:bapcode -d -o

 The "-d" and "-o" are important! The -d indicates that the new files should

be arranged in subdirectories below your current directory rather than all
together in your current directory. The -o indicates that new files should
overwrite any existing files in the destination directories. The -o is unnecessary

 BAP page E-5
 01mar92 Installing PC BAP

Version 1.0

the first time you install the software or if you install the software in an empty
directory, but is needed if you reinstall new versions of the files in place of older
versions.

 The above commands will copy a variety of BAP and AGRAM-related files into

subdirectories below your current directory on your hard drive. Information
about the various files and subdirectories is given in Section E.5.

 Note that the b:bapcode.exe archive file contains Fortran code and related

files required to reconstruct the executable files. You do not need to store these
files on your hard disk until and unless you intend to alter one of the programs.
When unarchived, the files from b:bapcode.exe fill up 2M bytes of disk
space.

6) Display the contents of your current directory.
 Use the DIR command to make certain that the distribution files were transfered

to subdirectories below the current directory rather than into the current
directory itself:

 dos> dir

 The resulting display should show that the current directory is c:\agram and

that there are very few files therein: a read.me file, the "." and ".." files, and
several subdirectories (for which a "<DIR>" will be shown in the second column
of the display).

 It is very easy to forget to type the "-d" in your archive extraction commands

(step 5), and as a consequence, have some or all of the distribution files
transfered to your current directory rather than into subdirectories below that
directory. In that case, the DIR display will show many files: You should delete
these files and repeat step 5, remembering to type the "-d" this time!

7) Execute the 4agram.bat setup commands.
 Create a 4agram.bat file that you will invoke whenever you wish to run BAP

or its auxiliary software. The 4agram.bat file should contain the following
two statements:

 set agroot=c:\agram
 path=%agroot%\exes;%path%
 and possibly a third statement:
 c:\agram\exes\msherc

 The first statement defines a new environment variable named agroot that

indicates the parent directory below which all the BAP distribution files are
located. The second statement adds the c:\agram\exes directory to the DOS
path environment variable. (Note that this second statement must be executed
from within a .bat file: the %whatever% syntax will not work as intended if
typed at the DOS command line.) The third statement should be included if and
only if your computer uses a monochrome, Hercules-compatible monitor and
video adaptor.

 To invoke the 4agram.bat setup commands, either:
 A) If you have genuinely installed the distribution files at c:\agram rather

than on some other partition or directory, and if you are not using a
Hercules-compatible monochrome monitor, you can use the 4agram.bat

 page E-6 BAP
 Installing PC BAP 01mar92

Version 1.0

file that is provided among the distribution files. To invoke it, simply type
the following at the DOS prompt:

 dos> c:\agram\examples\4agram.bat

 or B) If you have installed the programs on a disk partition and directory other

than c:\agram, however, or you are using a Hercules monitor, you will
need to make a copy of the distributed 4agram.bat file, then use a text
editor (or the character-only mode of a word processor) to modify your copy
of 4agram.bat. Change the "c:\agram" therein to the appropriate drive
designator and directory and/or remove the leading comments from the
"c:\agram\exes\msherc" line.

 You will probably want to place your 4agram.bat file in some directory

that is listed in your DOS path environment variable, so you will not need
to type the path to the file each time you invoke 4agram.bat. And, if
you've modified 4agram.bat, it is best to keep your copy of 4agram.bat
in some directory other than \agram or its subdirectories, so you can install
new versions of this software, when they become available, without
overwriting your special version of 4agram.bat. Or, you may want to
include the commands in 4agram.bat within your autoexec.bat file
(See step 9a).

 Once you have modified your copy of 4agram.bat, invoke the commands

therein:

 dos> 4agram.bat

 Warning: 4agram.bat may lock up your computer or generate diagnostic

messages ("out of environment space", "path too long", "bad
command or file name"). If so, refer to Sections F.10 and F.11 in the Trouble-
Shooting Appendix.

 To verify that 4agram.bat has defined the agroot environment variable

without adding any trailing blanks, use the path command without any
arguments:

 dos> path

 This will display the current value for the path environment variable, as it has

been modified by 4agram.bat. Users who have modified their own version of
4agram.bat could easily, and unknowingly, have introduced trailing blanks to
the end of some of the lines in the modified 4agram.bat, thanks to quirks in
some text editors that occasionally add the trailing blanks. And trailing blanks at
the end of the agroot value will cause problems! If the path value displayed
shows any blanks between the "c:\agram" and the "\exes;", you will need
to remove the trailing blank(s) from the set agroot=c:\agram statement in
4agram.bat.

8) Verify that the computer has been configured to allow BAP to use extended

memory.
 BAP runs in the "extended" memory area above the first 640K bytes of

"conventional" memory used by DOS, and as a consequence your computer must
have at least 3M bytes of RAM in order to run BAP. The computer must be
configured so that all or part of its extended memory is available to BAP rather
than having all the extended memory put to use as a RAM disk or a disk cache.
And any Extended-Memory Management software in use on the computer must

 BAP page E-7
 01mar92 Installing PC BAP

Version 1.0

be compatible with BAP. If RAM disks, disk caches, and Memory Managers are
unfamiliar to you, they are probably not implemented on your computer and
cannot, therefor, interfere with BAP -- unless someone else configured your
computer for you.

 If your computer is presently configured so that all its extended memory is used

as a RAM drive or as a disk cache, you will need to reconfigure the computer to
make at least 2M bytes of the extended memory available to BAP. If your
computer is configured so that part of its extended memory is used as a RAM
drive or a disk cache, BAP will normally detect that fact and use only the
extended memory that remains. Some RAM drive or disk-caching drivers cannot
be detected by BAP, however, and these should be disabled whenever you use
BAP. The MEM command that is provided with MS DOS, versions 4.0 and
higher (but not with earlier versions of DOS), will report the total amount of
extended or XMS1 memory that you have on your computer. The WHATMEM
command that is provided with the BAP support programs will report how
much of that extended or XMS memory it detects as being available for use by
BAP. Try the following to learn about the extended memory on your computer:

 dos> mem (this requires DOS version 4.0 or greater.)
 dos> whatmem

 If your computer is configured to use part of its extended memory as a RAM disk

or disk cache but WHATMEM reports that the same memory used by the RAM
disk or disk cache is "available", you will need to disable the RAM disk or disk
cache whenever you use BAP. Several RAM drive configurations and
corresponding WHATMEM displays are shown in Section F.4 of the Trouble-
Shooting Appendix.

 To learn whether BAP can make use of the extended memory on your computer

and whether it can coexist with whatever memory management software that
might be implemented on your computer, try to run BAP in its simplest form:

 dos> bap

 In response, BAP should display a screen full of text that reminds you how to

run BAP and where to look for additional information. If you get this display,
BAP is successfully making use of the extended memory on your computer
(although it could be interfering with a RAM disk that might be using the same
memory). If you don't get the screen full of text from BAP, you will probably see
one of the following diagnostic messages:

 1) "OS386: Machine is running incompatible extended memory
 manager"
 2) "OS386: Insufficient memory to load .EXP file
 UP: error creating task"
 3) "Program stack exhausted - try /ST link switch ..."

 But whatever the response, if you do not get the BAP information display, you

should reboot the computer at this point, then refer to Section F.4 of the Trouble-
Shooting Appendix for more information about extended memory usage.

1 "XMS" memory is extended memory that is managed by software (like

HIMEM.SYS) that conforms to the Lotus/Intel/Microsoft/AST eXtended
Memory Specification, version 2.0, which specifies a standard way for programs to
use extended memory cooperatively.

 page E-8 BAP
 Installing PC BAP 01mar92

Version 1.0

RAM drives, disk caches, and memory management utilities are usually
configured via statements in the config.sys file which is located in the root
directory of the boot drive (the boot drive is usually the c: drive). If you
change the contents of your config.sys file, remember to reboot the
computer to implement the changes. It is a real nuisance to edit your
config.sys file each time you want to reconfigure your computer, however. If
you find that you need to reconfigure frequently, you may want to make use of
one of the software utilities that are available in the public-domain that allow
you to choose from several alternative versions of config.sys and
autoexec.bat when you reboot your computer. For information about the
one included with the BAP distribution files, see
c:\agram\docs\altboots.doc.

9) Optional steps you may want to take after you have familiarized yourself with

the software:
 After you have read through this entire Appendix and run the preliminary tests

indicated in Section E.3, you may want to fine-tune your installation as follows.

9a) Consider including 4agram.bat in autoexec.bat.
 Once you have verified that the 4agram.bat file (whether your own or the

distribution version) is working properly, you may want to incorporate the
definitions in 4agram.bat into your autoexec.bat file, so these definitions
will be made every time you power up your computer. This is an optional step:
some users may prefer to leave the 4agram.bat definitions out of their normal
setup procedures and invoke 4agram.bat only when it is needed. If you try to
run BAP or any of its support programs without having invoked 4agram.bat
since the last time the computer was booted, you will be reminded that
4agram.bat is needed by the "Bad command or file name" diagnostic
message from DOS.

 If you do want the 4agram.bat definitions made via autoexec.bat,

however, you can add a call c:\agram\examples\4agram.bat statement,
or add the two or three non-comment statements from 4agram.bat, into
autoexec.bat after the last path statement already in autoexec.bat. The
autoexec.bat file, like the config.sys file, is located in the root directory of
the boot drive; the commands in both files are invoked automatically every time
you power up or reboot the computer.

9b) Consider deleting some of the distribution files.
 Once you have familiarized yourself with the files that are available in the

distribution set, you can free up some of the space they take on your hard disk by
deleting those files that you are unlikely to use after you've run the initial tests
indicated in Section E.3. If you later decide you want some of the deleted files
afterall, you can reload them from the distribution diskettes by repeating step 5.

 With the possible exception of the c:\agram\examples\4agram.bat file

and the c:\agram\docs\baphelp.txt file, none of the files in the
c:\agram\docs\, c:\agram\testdata\ or c:\agram\examples\
directories are required: these files merely provide examples and
documentation. The names and contents of most the files in these directories are
indicated in Section E.5.

 You may find that you have no need for some of the files in the

c:\agram\exes\ directory either. The files in this directory implement BAP

 BAP page E-9
 01mar92 Installing PC BAP

Version 1.0

and each of the support programs listed in Chapter 6. For any of the programs
you do not need, you can delete the corresponding programname.exe (or
programname.bat, or programname.com) file. The lowbap.exe file, for
example, can be deleted if you anticipate that you will always use BAP rather
than its LOWBAP alternative. Since the lowbap.exe file takes up more than a
half-megabyte of disk space, it is an especially good candidate for removal.

9c) Consider Renaming the HELP Command.
 The HELP command provided with the BAP support programs is named

"HELP" for consistency with the commands used on the USGS VAXes. On PCs,
however, the HELP command distributed with BAP will override any other
HELP command that may have been available on the computer before
4agram.bat was invoked. You may want to rename the BAP HELP to
something else in order to retain other HELP functions, like the one in DOS 5.0.
To rename the HELP that was installed with BAP to BAPHELP rather than
HELP, for example, type the following:

 dos> rename c:\agram\exes\help.bat baphelp.bat

 Note that the HELP function may be implemented with a help.exe file rather

than a help.bat file in future versions of the distribution files. (Help.exe
can be renamed in the same manner as help.bat can.) The help.bat file in
the preliminary version of this software does nothing but tell the user that the
help functions are not really available yet.

E.3 Test Runs

 To verify that you have installed the software satisfactorily and to give yourself
a quick introduction, perform each of the little tests described in this Section. Before
doing so, however, set your current directory to some empty directory (shown as
q:\temp in this example) where there is room for you to generate a half-megabyte
of temporary files. Also, remember to invoke the 4agram.bat commands if you
have not already done so since the last time you powered up or booted your
computer.

 dos> q: (or wherever)
 dos> md \temp (only if the directory does not already exist)
 dos> cd \temp
 dos> dir (just to verify that the directory is empty)

1) Printer test.
 Test that your printer can handle the plotting commands in the AGRAM plot

description files (.aps files). If your printer is a PostScript printer, use:

 dos> print c:\agram\examples\testplot.aps

 The printer must be a "PostScript" printer in order to produce plots when

directed to print .aps files. If your printer is not a PostScript printer, you will
need some software that will translate the PostScript plot descriptions in the
.aps files into something your printer can handle. (Or you could reprogram the
plot interface to work with other printers, plotters, or plot software packages --
see Appendix G.) See the file at c:\agram\docs\comsoft.nts for a list of
some of the PostScript-to-other-printer translating programs that are available
from commercial software vendors. Of these, the author has tested only the
"GoScript" software (it is quite slow, but works well otherwise). When using

 page E-10 BAP
 Installing PC BAP 01mar92

Version 1.0

GoScript to translate PostScript into something your printer can handle, the
command equivalent to the print command above is:

 dos> gs c:\agram\examples\testplot.aps

 If your printer is working appropriately, it will produce the following two

(nonsense) plots, each on a separate page:

2) Test the screen plotting functions.
 Try the following:

 dos> scrplot c:\agram\examples\testplot.aps

 You should see the same two test plots as are shown above on your computer

screen. You will need to press the "enter" key after the first plot is displayed,
before the second plot will appear.

 The message at the bottom of the screen should tell you to "Press ENTER

when thru viewing this plot". If you would like to test how and
whether the little TXTMODE program works, press control+C to abort the
SCRPLOT program rather than pressing the enter key. Notice your screen. On
some computers the cursor will disappear but all else will look OK; on other
computers, the screen will be a mess. In either case, type txtmode to reset the
video system from graphics mode to text mode:

 dos> txtmode

 Note that TXTMODE should not be needed unless a screen-plotting program

(SCRPLOT, STSP, or SFAS) aborts; when these programs end normally, they
reset the video themselves. Note also that the TXTMODE function can also be
accomplished with the DOS mode command (mode co80 for color monitors;
mode mono for hercules monochrome monitors.)

 The characters shown in the screen plots may be so small that you can barely

read them, especially if you have a small screen. If you really need to read the
characters, you can request that the screen-plotting programs use normal PC
display characters rather than the tiny plotted characters that are used by default.
Set the "msfonts" environment variable to indicate which type of characters
should be displayed. When msfonts=no, the normal PC display characters are
used; when msfonts is undefined or set to a directory that contains a
modern.fon file, the characters are drawn according to the information given
in the modern.fon file. (By default, the screen-plotting programs attempt to

 BAP page E-11
 01mar92 Installing PC BAP

Version 1.0

find the modern.fon file in the c:\agram\exes directory.) To view the
sample plot when it makes use of the normal PC display characters, try:

 dos> set msfonts=no
 dos> scrplot c:\agram\examples\testplot.aps

 To view the sample plot with the tiny plotted characters again, reset msfonts

as undefined and plot again:

 dos> set msfonts= (nothing after the "="!)
 dos> scrplot c:\agram\examples\testplot.aps

 Note: The current versions of the PC screen-plotting programs (SFAS, STSP,

SCRPLOT) don't handle characters as well as they might, no matter which way
msfonts is set. These problems may be fixed in future versions of the software,
but they can be avoided by using the screen display capability of commercial
PostScript-interpreting software packages. (The author uses the commercial
GoScript software for this purpose rather than her own SCRPLOT, STSP, and
SFAS programs.)

3) Plot the contents of an SMC-format time-series file.
 Try the following:

 dos> bap c:\agram\testdata\gilroy21.smc

 This is an example of how you might use the software if you installed it merely

to be able to display the time-series files from the Strong-Motion CD-ROM. By
default, when nothing but a time-series data file name is given on its command
line, BAP plots the time series to a PostScript file named bpplots.aps. You
can display the plot on your screen with the SCRPLOT command. For example:

 dos> scrplot bpplots.aps

 Or, to print the plot (the printer must be a PostScript printer), use:

 dos> print bpplots.aps

4) Run the first example shown in Appendix B.
 For a thorough test, run the first example shown in Appendix B. To do so, copy

the gilroy21.bat and gilroy21.brp files to your current directory:

 dos> copy c:\agram\examples\gilroy21.* *.*

 Then run the example!

 dos> gilroy21.bat

 Run messages will fly by the screen faster than you can read them (we hope!),

but a copy of all the messages generated by the BAP command in
gilroy21.bat are saved in the file named g1run.msg, where you can read
them later. gilroy21.bat will pause 3 times as it is running and ask you to
"Press any key to Continue". The first pause asks you to consider
whether it is OK for gilroy21.bat to delete any *.aps files that may be in
your current directory. (It should be OK to delete files, since you should be
running this in a directory with nothing in it but temporary test files, but
gilroy21.bat asks just to make sure.) gilroy21.bat pauses again after
the BAP command, and again after the first of two PTSP commands, just to give
you some sense of which messages you are watching on the screen.

 page E-12 BAP
 Installing PC BAP 01mar92

Version 1.0

 Gilroy21.bat should finish with a message that says: "+++ Done!". It
should have generated the following files in your current directory:

 g1run.msg a copy of the BAP run messages
 gila.aps PostScript plot file
 gilb.aps "
 gilc.aps "
 g1inout.bbf BBF-format time series file from the BAP INPUT step
 g1acc.bbf " from the LOCUT step
 g1vel.bbf " from the AVD step
 g1dis.bbf " from the AVD step
 g1fas.txt Fourier amplitude values from the BAP FAS step
 g1respon.txt Response spectra values from the BAP RESPON step.

 You can display the plots in any of the .aps files on your screen with the

SCRPLOT command. For example:

 dos> scrplot gila.aps

 To print the gila.aps plot (the printer must be a PostScript printer), use:

 dos> print gila.aps

 The run messages from your test, a copy of all the messages that were visible on

the screen while BAP was running, are in the file named g1run.msg.
Compare your run messages and your plot results to those shown in Appendix
B. Note that run messages printed out in the Appendix B example were
generated on a VAX, not a PC, so there will be some differences in the lower
significant digits.

 Note that the g1run.msg file is a plain text file that must be converted to

PostScript if you wish to print it on a PostScript printer. The ASC2PS program
included with the BAP support programs will create a PostScript file, given a text
file. For instructions, type:

 dos> asc2ps

E.4 Archived Distribution Files

 Archive files are used for distribution purposes because they are so much
smaller than their unarchived counterparts. The unarchived distribution files occupy
5.5M bytes of disk space, while the distributed archive files occupy only 2M bytes.

 The PKZIP program, version 1.10, created the self-extracting archive files. If you
wish to have more control over how you extract files from the archives than is
indicated in this report, you can get PKZIP and its user's manual, free of charge, from
the computer-based bulletin board (BBS) maintained by the PKZIP distributor (and
from many other shareware software sources). Like the BAP distribution files, the
PKZIP distribution files are contained in a self-extracting archive file. The file name
is PKZ110.EXE and the user's manual contained in that archive is named
manual.doc. The digits (110) in the PKZ110.EXE file name may change when
new versions of the software become available. The PKZIP distributor is at:

 PKWARE, Inc.
 9025 N. Deerwood Drive
 Brown Deer, WI 53223 USA

 BAP page E-13
 01mar92 Installing PC BAP

Version 1.0

 telephone: (414) 354-8699
 BBS (414) 354-8670

Note that PKZIP is "ShareWare". It has been licensed for use with the BAP self-
extracting archive files.

E.5 Unarchived Distribution Files

 The following directories will be created on the user's disk when component
files are extracted from the archive distribution files as indicated in step 5 of Section
E.2:

 c:\agram\exes\
 " \docs\
 " \testdata\
 " \examples\

When component files are extracted from the source-code bapcode.exe archive
file, the following directories are added:

 c:\agram\vaxcode\
 " \pccode\
 " \masmobjs\
 " \4msf\
 " \4L32\

The contents of these bapcode directories are described in Appendix G.

 The c:\agram\exes\ directory contains the executable files and batch
command files that are loaded and executed whenever bap or the name of one of
the support programs is typed on the user's command line. There is a .bat, .com,
or .exe file in this directory that corresponds to each of the programs listed in
Chapter 6, plus bap.exe, the executable file for the BAP program, and the
modern.fon file. As indicated in step 6 of Section E.2, the name of this directory
should be included in the path environment variable to allow the DOS operating
system to locate the files.

 The c:\agram\docs\ directory contains a variety of text files that provide
more documentation than is given in this report. Among the files in
c:\agram\docs\ are:

 smcfmt.doc Information about the content and structure of the SMC-

format data files. This is a copy of part of the read.me
file from the Strong-Motion CD-ROM.

 bbffmt.doc Information about the content and structure of blocked-
binary time-series data files.

 comsoft.nts A list of commercial PC software vendors that offer
software packages that might be of use in conjunction
with the programs described in this report.

 genplt.doc Information about the GENPLT plotting subroutine,
which is used to generate many of the BAP and AGRAM
plots.

 progagra.nts Miscellaneous programming notes about the AGRAM
programs.

 progbap.nts Miscellaneous programming notes that apply only to
BAP, not to other AGRAM programs.

 page E-14 BAP
 Installing PC BAP 01mar92

Version 1.0

 baphelp.txt The help information displayed by the
c:\agram\exes\help.bat file.

 bapinfo.txt Another copy of bapinfo.txt.
 baprunp.doc Information about the BAP run parameters. This file

merely contains a copy of some of the information given
in Chapter 4 of this report.

 The c:\agram\testdata\ directory contains a few sample data files. They
include:

 pvb6.smc SMC-format data file containing the time series used as

the input file for the examples shown in Figure 5.2.a of
Chapter 5.

 elcen1.smc SMC-format data file containing the time series used as
the input file for the examples shown in Figure 5.2.b.

 zigzag.smc SMC-format data file containing the time series used as
the input file for the examples shown in Figure 5.3.a.

 gilroy21.smc SMC-format data file containing the time series used as
the input file for the first example in Appendix B.

 andds1.bbf Blocked-binary data file used as the input file for the
examples shown in Figure 5.3.b. It is also used as the
input file for the second example shown in Appendix B.
This file is quite long; it may be removed from the
distribution set to reduce the size of the distribution
archive files.

 The c:\agram\examples\ directory contains a few files used for testing or
demonstrating the program. They include:
 4agram.bat Contains a sample set of AGRAM/BAP setup

statements. See step 6 in Section E.2.
 testplot.aps Contains PostScript descriptions of the two little test

plots shown in step 1 of Section E.3. Comments in this
file indicate how to change a .aps file into an
"encapsulated PostScript" file that can be included into
documents formatted by various word-processing and
desk-top publishing software packages.

 4smcdata.brp Contains a template of BAP run parameter settings
suitable for processing data files from the Strong-
Motion CD-ROM.

 gilroy21.bat PC version of the command file used to generate the first
example in Appendix B.

 gilroy21.brp This file is used as an @-file on the BAP command line in
gilroy21.bat. It contains the BAP run parameters.

 andds1.bat PC version of the command file used to generate the
second example in Appendix B.

 andds1.brp This file is used as an @-file on the BAP command line in
andds1.bat. It contains the BAP run parameters.

 a.tsp This file is used as an @-file on one of the TSPLOT
command lines in gilroy21.bat and in
andds1.bat. It contains run parameters for the
TSPLOT program.

 showic.bat Commands used to generate the curves shown in
Figures 5.2.a and 5.2.b.

 BAP page E-15
 01mar92 Installing PC BAP

Version 1.0

 zigzag.bat Commands used to generate the curves shown in Figure
5.3.a.

 smcdata.bat Commands used to generate the curves shown in Figure
5.3.b.

 page E-16 BAP
 Installing PC BAP 01mar92

Version 1.0

 BAP page F-1
 01mar92 Trouble Shooting

Version 1.0

Appendix F

Trouble Shooting

 Warnings about various pitfalls the user may encounter while using BAP and
the support programs are given in this Appendix.

F.1 Run Messages

 Diagnostic messages written by BAP show three asterisks (***) in the left-
hand margin of the screen display and in the left-hand margin of the baprun.msg
file. By default, the program will stop after printing such a message. The user can
modify this behavior, however, by resetting the warn run parameter to bells or
msg (warn=stop by default). When warn=bells or warn=msg, it is important
that users check whether the run messages contain any "***" diagnostics before
trusting the validity of BAP's plots and output data files.

 The overhead subroutines in BAP (those that interpret the command line, make
plots, and do file input and output operations) have not been as thoroughly tested as
the primary computing subroutines, so users may encounter some bugs! Some
diagnostic messages from deep within the subroutine library (which does not write
messages to baprun.msg) only appear on the user's screen (or batch job's log file),
and not in baprun.msg as well. These diagnostics will only occur with serious,
abort-the-program problems, so the diagnostics probably won't have scrolled off the
top of the screen before the user has a chance to notice them. These diagnostics
represent a problem in the code, even if the problem is only that the code should
have presented a nicer diagnostic. Such messages usually indicate that subroutine
woe is ending the run. The author of this report would appreciate receiving
information about any such problems, preferably by mail. Her address is given on
the preface page.

F.2 Disk Space

 If a BAP run aborts, the user should first check that there is sufficient space for
BAP to create its output files on the disk. Operating system error messages can be
quite misleading if disk space is exhausted, so check disk space whenever a
confusing error message appears. Use the show quota command on a VAX/VMS
computer; use the dir command on a PC/DOS computer. On a PC/DOS
computer, remember to include the appropriate drive designator in the dir
command if the drive where the BAP output files are written is different than the

 page F-2 BAP
 Trouble Shooting 01mar92

Version 1.0

current drive. For instance, if the current directory is c:\temp\ and the BAP
output files are going to a RAM drive on e:, use:

 dos> dir e:

to learn how much unused space remains on the e: drive.

F.3 RAM Space

 If a time series is quite long or if unusually long pads are required, BAP may
write error diagnostics that indicate that the time series or the pads have been
truncated due to insufficient space for the program's working arrays. A typical
insufficient-memory error diagnostic looks like:

 *** All the data would not fit in the working array.
 Only 24192 values were transfered from the input
 file to the array. ***

On a VAX:
 The size of BAP's three working arrays should be increased and the program
recompiled and relinked. Use a text editor to increase the size of the working arrays
by changing the number in the len3=# parameter statement in the bapsize.inc
file. Then recompile bap.for (via vax$ for bap) and relink the program (via
vax$ @bap.lnk). See Appendix G for information about how to retrieve the
bapsize.inc, bap.for, and bap.lnk files from the distribution set.

On a PC:
 Diagnostic messages stemming from insufficient memory can be more cryptic
on a PC than they are on a VAX. Insufficient memory usually results in the same sort
of diagnostic message as the one shown above, but in some circumstances, one of the
following messages may result:

1) "OS386: Insufficient memory to load .EXP file
 UP: error creating task"
2) "Program stack exhausted - try /ST link switch ..."

But in any case, the user will need to free up the extended memory on the computer
(see section F.4). Or, if there is insufficient extended memory on the computer,
installing more RAM chips to the computer will solve the problem. BAP wil make
use of however much extended memory there is on the computer that isn't already in
use by a RAM disk or disk cache.

F.4 Extended RAM on PCs

 BAP runs in the "extended" memory area above the first 640K bytes of
"conventional" memory used by DOS, and as a consequence your PC must have at
least 3M bytes of RAM in order to run BAP. Any Extended-Memory Management
software in use on the computer must be compatible with BAP and the computer
must be configured so that all or part of its extended memory is available to BAP
rather than being put to use as a RAM disk or a disk cache.

 If RAM disks, disk caches, and Memory Managers are unfamiliar to you, they
are probably not implemented on your computer and cannot, therefore, interfere
with BAP -- unless someone else configured your computer for you. RAM drives,
disk caches, and Memory Management utilities are usually configured via statements

 BAP page F-3
 01mar92 Trouble Shooting

Version 1.0

in the config.sys file which is located in the root directory of the boot drive (the
boot drive is usually the c: drive).

 To learn whether BAP is compatible with any Memory Management software
that might be implemented on your computer and whether BAP can make use of the
extended memory on your computer, try to run BAP in its simplest form:

 dos> bap

In response, BAP should display a screen full of text that reminds you how to run
BAP and where to look for additional information. If you get this display, BAP is
successfully making use of the extended memory on your computer (although it
could still be interfering with a RAM disk that might be using the same memory). If
you don't get the screen full of text from BAP, you will probably see one of the
following three diagnostic messages:

1) "OS386: Machine is running incompatible extended memory

manager"
2) "OS386: Insufficient memory to load .EXP file
 UP: error creating task"
3) "Program stack exhausted - try /ST link switch ..."

But whatever the response, if you do not get the BAP information display, you
should reboot the computer at this point.

 The first diagnostic shown above indicates that there is an inconsistency
between BAP and the Extended Memory Management software active on your
computer. You will need to reconfigure (or disable) the Memory Manager so BAP
can make use of the managed memory. BAP should be compatible with any
Expanded-Memory Manager that uses the "VCPI" protocol (e.g., CEMM, version 6.0
and higher; Qualitas 386MAX, version 4.0 and higher; and Quarterdeck QEMM,
version 4.2 or higher), but your configuration setup may need to be modified for use
with BAP. If you are using a Memory Manager, you are probably already too
familiar with the subtle and frustrating inconsistencies between various software
packages. If you cannot get BAP and your Memory Managment utility to work
together, simply disable the Memory Manager altogether when using BAP. Or,
appeal for help to the Technical Support staff of the company that offers the Memory
Management software. The support person will probably need to know the names
and versions of the DOS extender and the compiler used to construct the BAP
program: That's the Lahey/Ergo OS386 DOS extender, version 2.1.06; and the Lahey
F77L-EM/32 fortran compiler, version 4.02. (The version numbers may change as
the BAP software evolves: refer to the bapinfo.txt file on the software
distribution diskettes for current information).

 The second and third diagnostic messages shown above indicate that there is
not enough unused extended memory available for BAP to run in. If your computer
is presently configured so that all its extended memory is used as a RAM drive or as
a disk cache, you will need to reconfigure the computer to make at least 2M bytes of
the extended memory available to BAP. If your computer is configured so that part
of its extended memory is used as a RAM drive or a disk cache, BAP will normally
detect that fact and use only the extended memory that remains. Some RAM drive or
disk-caching drivers cannot be detected by BAP, however, and these should be
disabled whenever you use BAP.

 page F-4 BAP
 Trouble Shooting 01mar92

Version 1.0

 The MEM command that is provided with MS DOS, versions 4.0 and higher (but
not with earlier versions of DOS), will report the total amount of extended or XMS1
memory that you have on your computer. The WHATMEM command that is
provided with the BAP support programs will report how much of that extended or
XMS memory it detects as being available for use by BAP. Try the following to learn
about the extended memory on your computer:

 dos> mem (this requires DOS version 4.0 or greater.)
 dos> whatmem

 If your computer is configured to use part of its extended memory as a RAM
disk or disk cache but WHATMEM reports that the same memory used by the RAM
disk or disk cache is "available", you will need to disable the RAM disk or disk cache
whenever you use BAP.

 Here follow sample WHATMEM displays from 3 different computers: A, B,
and C. Each computer has 8M bytes of RAM, with the first 640K bytes treated as
"conventional" memory and 4M bytes of the remaining "extended" memory used as a
RAM disk. WHATMEM can recognize that something (the RAM disk) is already
using 4M bytes of the extended memory on computers A and B, but it does not
recognize that 4M bytes are already in use on computer C. If BAP were invoked on
computer C, it would overwrite and destroy the contents of the RAM disk.
Consequently, the statements in the config.sys file on computer C that
implement the RAM disk should be disabled whenever BAP is used. On most
computers, you can disable statements in config.sys by prefacing them with
"rem " (Many computers will ignore lines that begin with "rem" in config.sys;
some computers will write out an "Unrecognized command in CONFIG.SYS"
warning as they attempt to process a rem line in config.sys, but will proceed
satisfactorily otherwise; and some computers will not allow you to comment out
lines in config.sys at all: you must remove the unwanted statements altogether.)
If you change the contents of your config.sys file, remember to reboot the
computer to implement the changes. It is a real nuisance to edit your config.sys
file each time you want to reconfigure your computer. If you find that you need to
reconfigure frequently, you may want to make use of one of the software utilities that
are available in the public-domain that allow you to choose from several alternative
versions of config.sys and autoexec.bat when you reboot your computer.
For information about the one included with the BAP distribution files, see
c:\agram\docs\altboots.doc.

Computer A
 The RAM drive on Computer A is implemented with the RAMDRIVE.SYS and

HIMEM.SYS software provided with MS DOS 5.0, via the following three
statements in config.sys:

 lastdrive=z:
 device=himem.sys
 device=c:\dos\ramdrive.sys 4096 512 64 /e

 The first line allows DOS to assign a new drive-designating letter to the RAM

drive; the second line installs the himem.sys XMS memory manager that is
required by the version of ramdrive.sys that is provided with DOS 5.0; and

1 "XMS" memory is extended memory that is managed by software (like

HIMEM.SYS) that conforms to the Lotus/Intel/Microsoft/AST eXtended
Memory Specification, version 2.0, which specifies a standard way for programs to
use extended memory cooperatively.

 BAP page F-5
 01mar92 Trouble Shooting

Version 1.0

the third line installs the ramdrive.sys RAM disk driver. The WHATMEM
display on this computer indicates that BAP would have approximately 3M
bytes of XMS memory available to it (the other 4M bytes being used by the RAM
disk):

 Extended Memory Status, Version 1.3
 Copyright (c) 1987-91 Ergo Computing
 System has:
 3008K available from XMS memory
 64K HMA in use by DOS or other HMA user
 0K of extended memory remaining unused

Computer B
 The RAM drive on Computer B is implemented with the RAMDRIVE.SYS

software provided with MS DOS 3.3, via the following two statements in
config.sys:

 lastdrive=z:
 device=c:\dos\ramdrive.sys 4096 512 64 /e

 Note that the ramdrive.sys provided with DOS 3.3 does not need to be used

in conjunction with himem.sys or any other XMS memory manager. The
WHATMEM display on this computer also indicates that only 3 of the 8M bytes
of memory are available to BAP (just as we would wish):

 Extended Memory Status, Version 1.3
 Copyright (c) 1987-91 Ergo Computing
 System has:
 3328K of total extended memory (there are 7424, really)
 3328K available from extended memory

Computer C
 The RAM drive on Computer C is implemented with the FASTDISK software

which was provided with the computer (an AST brand), via the following two
statements in config.sys:

 lastdrive=z:
 device=c:\ast\fastdisk.sys /extm/m=4096/ssize=512/dir=512

 The WHATMEM display on this computer indicates that all the extended

memory on the machine (8M bytes total RAM - 640K bytes of conventional
memory) are available to BAP. WHATMEM cannot detect that there are 4M
bytes of extended memory that BAP should not use. The version of FASTDISK
used on this computer is several years old and as such is incompatible with any
of the conventions for making use of extended memory that WHATMEM and
BAP can recognize. Consequently, this RAM disk should not be used at the same
time that BAP is used.

 Extended Memory Status, Version 1.3
 Copyright (c) 1987-91 Ergo Computing
 System has:
 7424K of total extended memory
 7424K available from extended memory

F.5 The infile Parameter in BAP's Run Parameter List

 The infile parameter, which indicates the name of the input time-series file,
is unique among the BAP run parameters in that its value can be specified by giving

 page F-6 BAP
 Trouble Shooting 01mar92

Version 1.0

just the file name without the infile= part of the assignment statement. For
example, BAP mydata.smc is equivalent to BAP infile=mydata.smc. This
short form can be useful when one wishes to fit all the required run parameters on a
limited-length command line without resorting to using an @-file.

 When used, the abbreviated form of the infile parameter assignment (where
the "infile=" is omitted) is best given as the first parameter in the list. The
command-line interpreting software will be confused if a file name without the
infile= follows an assignment statement for an indexed parameter. The
interpreter must encounter the name of another input parameter after assigning a
value to an indexed parameter before it will stop assigning values to the indexed
parameter. For instance, pltlbl(3)= "title stuff", mydata.smc will
assign "mydata.smc" to pltlbl(4) rather than to infile. The easiest way to
avoid this problem is to maintain the habit of providing the input file name as the
first of the run parameters, or of supplying the infile= part of the assignment.

F.6 Using & and @ in Long Command Lines

 An ampersand (&) can be used at the end of a command line to tell the BAP,
TSPLOT, and FASPLOT command-line interpreting software to continue reading run
parameters from the standard input stream. The ampersand works fine as long as
the user is typing the command directly in response to the operating system prompt,
but it does not work well on PC/DOS machines when the command is placed in a
.bat file that will be executed later. The user's terminal rather than the .bat file is
DOS's standard input stream, so one cannot place an entire, continued, command
line in a .bat file. (This is not a problem on VAX/VMS machines, because VMS
treats an "indirect command file" as the standard input stream when executing
commands in that file.)

 BAP, TSPLOT, and FASPLOT will read their run parameters from disk files as
well as from their command line if the user names such disk files on the command
line with an "@" character before each such file name. The @-files are particularly
useful on PCs, because DOS command lines are limited to 128 characters and they
cannot be continued with the & character in .bat files.

F.7 File Names

 The command-line interpreters in BAP and the support programs require that
file names contain at least one alphabetic character or a directory specification. If not,
the command-line interpreters assume the name is a numeric run parameter, not a
file name. File names must also include the dot: the command-line interpreters will
recognize mydata. as a valid file name, but they will not recognize mydata as a
file name.

 File names given on VAX/AGRAM command lines cannot include version
numbers. Only the most recent version of a file may be specified. File names given
on PC/AGRAM command lines cannot include the .\ or ..\ syntax.

 BAP page F-7
 01mar92 Trouble Shooting

Version 1.0

F.8 BAP Output Files

 Beware against overwriting existing BAP output files with new versions,
especially on DOS machines, for DOS does not retain more than one version of a file
name. The user can distinguish output files from one run from those from another
by:

• using a different value for idc in each run;
• renaming output files between runs;
• using a different output directory, outdir, in each run.

F.9 PC Screen-Plotting Programs

 The TXTMODE program can be used after a user breaks out of a screen-plotting
program (by typing control+C) to reset the screen from video mode back to text
mode. The msfonts environment variable can be used to alter the characters used
in screen plots. See Step 2 in section E.3 of the Installation Appendix for information
about txtmode and msfonts.

F.10 The PC/DOS "agroot" Environment Variable

 The commands in c:\agram\examples\4agram.bat, or the user's own
version of 4agram.bat, must be invoked before BAP or its support software can be
used on a PC. (Refer to Section E.2, step 7, of the Installation Appendix for more
information about 4agram.bat.) Take care that there are no blank characters
following the definition of the "agroot" environment variable that is defined in
4agram.bat. This should not be a problem with the 4agram.bat file provided
with the BAP distribution files, but users who have modified their own version of
4agram.bat could easily, and unknowingly, introduce trailing blanks to the end of
some of the lines in the modified 4agram.bat. Some text editors will occasionally
add trailing blanks to the end of lines. And trailing blanks at the end of the agroot
value will cause problems! After having invoked 4agram.bat, you can determine
whether or not there are any trailing blanks in the agroot variable typing "path"
(with no equal sign) at the DOS prompt. If the path value displayed shows any
blanks before the "\exes;", you will need to remove the trailing blank(s) from the
set agroot=whatever statement in 4agram.bat.

F.11 The Size of the DOS "Environment Space" on PCs

 Running the 4agram.bat setup commands on a PC may lock up your
computer or generate diagnostic messages. The problems will occur if:

1) the available DOS "environment" space is not large enough for 4agram.bat to

lengthen the value of the path environment variable or to add the agroot
variable and value; or

2) the value of DOS's path enviroment variable is already so long that
4agram.bat cannot successfully add the "c:\agram\exes;" characters to the
existing path list.

So if 4agram.bat does not work, reboot the computer, then type the following two
dos commands:

 page F-8 BAP
 Trouble Shooting 01mar92

Version 1.0

 dos> set
 dos> path

and consider one or both of the following fixes.

1) Is the total environment space to small?

 The SET command (without arguments) displays all the definitions in DOS's
environment space, which by default is only 160, maybe 256, characters long
(depending on which version of DOS is used). Check the display from the SET
command: are the number of characters displayed close to the 160, or 256-character
limit, or close to whatever limit is specified in a shell statement in your
config.sys file? After invoking 4agram.bat, is the agroot variable equal to
the name of the root directory for the BAP distribution files? (You want to see
something like agroot=c:\agram.) Does the directory list in the path variable
include the c:\agram\exes directory? (You want to see something like
path=c:\agram\exes;...and more...)

 Some computers will give you an "out of environment space" error diagnostic
when you need more environment space, others will procede with no diagnostic and
simply ignore the set statement, and others will simply lock up. But whatever the
symptom, you can increase the environment space via a shell statement in your
config.sys file. For detailed information about config.sys and about the
shell command, refer to the DOS user's manual, but basically, the following
shell statement can be used to specify the size of the environment space:

 shell =c:\command.com /e:2026 /p

where the 2026 in this example indicates the size, in characters, of the environment
space requested. If you do alter your config.sys file, remember to reboot the
computer to implement the new version. Note that the config.sys file, like the
autoexec.com file, is located in the root directory of the boot disk (that's the c:
drive, usually); the commands in both files are executed automatically every time
you power up or reboot the computer.

2) Is the value for the "path" environment variable too long?

 The PATH command (without arguments) displays the current value for the
"path" environment variable. The path value lists the directories DOS will search
when attempting to find an .exe, .com, or .bat file that matches the command
name typed by the computer user. The path value is limited to 123 characters (due
to the 128-character command-line limit in DOS), so if the path list is already quite
long before 4agram.bat attempts to append the "c:\agram\exes;" characters
to it, the desired path value may be too long. Some computers will give you a
diagnostic to that effect, some will simply truncate the path value, others will lock
up. But whatever the symtom, you will need to reduce the length of your path list
rather than use one that is longer than 123 characters. (When the path value is at
123 characters, the display from the path command will wrap around on an 80-
character PC screen to show a little more than a line and a half of characters: 123+5-
80 = 48 characters in the second line.)

 The path list is usually defined via one or more path statements in the
autoexec.bat file. If it gets too long, you will need to remove directories that
contain infrequently-used software from the list. Some methods for compensating
for the removal include:

 BAP page F-9
 01mar92 Trouble Shooting

Version 1.0

• Add a directory that contains infrequently-used software back into the path
list via a .bat file you invoke only when you are about to use the relevant
software. Each such .bat file could contain a path statement similar to the
one in 4agram.bat, where the new directory is appended to the current
path list. For instance, the following line would add the
g:\abcd\qwerty\stuff directory to the beginning of the current path list:

 path=g:\abcd\qwerty\stuff;%path%

The DOS .bat-file processor would replace the %path% expression shown in
the above statement with the current value of the path variable. This
%whatever% syntax must be invoked from within a .bat file, however, for it
will not work when entered from the DOS command line.
The new .bat files should, for convenience, be located in a directory that is
itself in the path value defined by autoexec.bat.

• Make .bat "commands" that translate to commands that specify the
appropriate path for the relevant software. For example, if mugwump.bat is
in a directory that is already listed in the path value and the mugwump.bat
file contains the line

 g:\abcd\qwerty\stuff\mugwump %1 %2 %3 %4 %5 %6 %7 %9

then the g:\abcd\qwerty\stuff directory need not be listed in the path
list to allow the user to simply type mugwump to invoke the MUGWUMP
program.

• Use the DOS subst command to make short synonyms for long directory

names, then use the short synonyms in the path list. For instance, one could
define "z:" to be a synonym for "g:\abcd\qwerty\stuff" by including the
following statement in autoexec.bat:

 subst z: g:\abcd\qwerty\stuff\

then the path definition in autoexec.bat could include "z:\;" in the path
list rather than "c:\abcd\qwerty\stuff;". This technique requires that
you include a "lastdrive=z:" statement in the config.sys file, however.

F.12 Technical Support

 Warnings about bugs and nuisances that various users have encountered while
using this software will be maintained in the bapinfo.txt file discussed in
Appendixes D and E. User's who do not find suggestions in this Appendix (F) or in
bapinfo.txt for working around problems they encounter while using or
installing this software are welcome to request assistance from the author. Such
requests should usually be made by mail (address is given on the preface page)
unless they are simple questions that can be answered briefly over the telephone.
Send a floppy diskette that contains enough information to reproduce your problem:
a copy of your input time-series file, your BAP command, any @-files specified in the
BAP command, and a copy of the run messages file generated by the BAP command
on your computer are usually needed. Please also send a return mailing label and a
description of your problem.

 page F-10 BAP
 Trouble Shooting 01mar92

Version 1.0

 BAP page G-1
 01mar92 Programming

Version 1.0

Appendix G

Programming Considerations

 The Fortran source code for BAP and its support programs is distributed in
several files for each program. The source code for the BAP program, for instance, is
distributed in files named bap.vax, msfbap.add, and L32bap.add. The longest
source-code file for each program is named program-name.vax and contains a
concatenated collection of all the Fortran and related files required to build the
program on a VAX/VMS computer. The other source-code files are named
CCCprogram-name.add; each contains a concatenated collection of the files needed,
in addition to those from program-name.vax, to construct the program on a
computer other than a VAX. The first three characters of the .add file names
indicate the computer and/or compiler for which the code is appropriate. The .add
files having names beginning with msf contain code suited to the Microsoft fortran
compiler for PCs; .add files having names beginning with L32 contain code suited
for the Lahey F77L-EM/32 compiler for PCs. Other 3-character identifiers will be
used when the code is ported to other computers and/or other compilers.

G.1 SCATTR and GATHER

 The GATHER and SCATTR programs that are distributed with BAP are little
utilities that allow the user to concatenate or separate text files. GATHER will, when
given a list of file names, concatenate those files into one long file; this is the program
that created the distributed .vax and .add files. SCATTR will, when given a
GATHER output file like one of the .vax or .add files, rewrite the original
component files.

 An executable version of SCATTR is included among the PC distribution files.
To use SCATTR to create all the files needed to construct the Microsoft fortran version
of the AGRAMLIB subroutine library on a PC, for example, one could use the
following two SCATTR commands:

 dos> scattr c:\agram\vaxcode\agramlib.vax
 dos> scattr c:\agram\pccode\msfaglib.add

 On other computers, for which no executable files are given in the BAP
distribution set, a free-standing version of SCATTR is provided in the scattr.for
file. The free-standing version of SCATTR does not reference the AGRAMLIB
subroutine library, which provides the command-line interpreting functions, but

 page G-2 BAP
 Programming 01mar92

Version 1.0

which may not be available at the time SCATTR is needed. So free-standing SCATTR
expects its input .vax or .add file to have been copied to a file named
scattr.in. The user would need to compile and link scattr.for before using it.
To use the free-standing version of SCATTR on a VAX computer to create all the
AGRAMLIB component files, for example, one could use the following VMS
commands:

 vax$ for scattr.for
 vax$ link scattr.obj
 vax$ copy agramlib.vax scattr.in
 vax$ run scattr

 The version of SCATTR for PCs (hereafter referred to as PC/SCATTR) will
modify some of the Fortran statements it transfers from a .vax file to the scattered
output files. PC/SCATTR identifies the computer that generated the input file by the
content of the first line read from the input file. If the source computer is not the same
as the target computer on which SCATTR is executing, SCATTR will translate some of
the fortran statements to accommodate different conventions used with the source
and target Fortran compilers. Only the few translations that apply to coding
conventions used in the AGRAM code are applied, however; SCATTR is not a
general-purpose translator.

 The Fortran statements that PC/SCATTR may modify are include statements
and save statements. The VAX/VMS include statements in the AGRAM code
often have trailing "/list" or "/nolist" qualifiers; SCATTR removes these
qualifiers on PCs. PC/SCATTR will also comment out any save statements it
encounters in a file that was GATHERed on a VAX, for version 5.0 of the Microsoft PC
fortran compiler objects if there are more than two subroutines in a file that contain
the same save statement. (This bug has been fixed in version 5.1 of the compiler,
but the fix has not been removed from SCATTR -- yet.) Since save statements are
not needed with the Microsoft compiler anyway (all local variables are by default
stored as static variables), SCATTR simply comments them out with "c ###" when
transferring VAX fortran to PC fortran, and removes the "c ###" from save
statements when transferring PC fortran to VAX fortran.

 If the second line of SCATTR's input file contains "pc/dos", SCATTR assumes
the input file was gathered on a PC; if that line contains "vax/vms" or "edt",
SCATTR assumes the input file was gathered on a VAX. If SCATTR finds neither
"pc/dos", nor "vax/vms", nor "edt" on the second line, it assumes that the source
computer is the same as the target computer.

 When transferring VAX Fortran files to PC output files, SCATTR will also
truncate to eight characters any component file names that were longer than eight
characters on the VAX, and it will rename some of the file name extensions so VAX
versions of these files can be distinguished from similarly named PC versions. For
instance, files that had .bat as their file name extension on the USGS VAXes will be
scattered to a PC disk with an extension of .vxb. Any file name truncations or file
name extension modifications that SCATTR makes are displayed on the user's screen
as SCATTR executes.

 SCATTR can be modified by users to perform other translations, as needed.
Refer to comments in the scattr.for file.

 BAP page G-3
 01mar92 Programming

Version 1.0

 As with SCATTR, the free-standing version of GATHER in gather.for does
not reference the AGRAMLIB subroutine library and consequently has no access to its
command line. Free-standing GATHER expects its input to be in a file named
gather.in and it produces its output in a file named gather.out. The
command-line interpreting version of GATHER (as opposed to the free-standing
version) expects two file names on its command line, as in:

 $|> gather gathered-output-file = list-file

Where list-file is the input file: it should contain a list of the names of all the
files to be copied to the output file. Gathered-output-file is the name of the
output file to be created. The list-file should contain its own name as the first
file in the list and, rather than a file name, the first line in the list-file should
contain the "pc/dos", "vax/vms", or "edt" that indicates which type of Fortran
conventions are used in the other files. The list-file may be in the format used
for the control files used with the WORKSHOP program (which is available only on
the USGS/ES&G VAXes).

 GATHERed files consist of a concatenated series of component files, each
separated from the others with a leading line having a carat (^) as the first character,
the component file name as the last few characters, and a series of dots between the
carat and the component file name. Each component file is followed by a line that
contains a single carat in the first column.

G.2 Programming for PCs

 The PC version of BAP was constructed at the USGS using version 4.02 of the 32-
bit, protected-mode, Lahey F77L-EM/32 Fortran compiler. The support programs
(and the "LOWBAP" version of BAP) were constructed using version 5.1 of the 16-bit,
real-mode, Microsoft Fortran compiler1. The screen-plotting programs use the
graphics subroutines provided by the Microsoft compiler; hard-copy plotting
functions are accomplished with the PostScript page description language. Other
compilers and other plotting methods could be used as well. Although the USGS
does not endorse or recommend any particular compiler, plot software, or software
vendor, names of a few vendors are listed in the c:\agram\docs\comsoft.nts
file to give some indication of the choices available.

 The Fortran source code and related files used to construct BAP and its support
programs are distributed for PCs in a self-extracting archive file named
bapcode.exe. (Refer to Appendix E for more information about the BAP archive
distribution files.) When component files are extracted from the bapcode.exe
archive file, the following subdirectories are added below the user's current directory,
here shown as \agram\.

 \agram\vaxcode\
 " \pccode\
 " \masmobjs\
 " \4msf\
 " \4L32\

 The \agram\vaxcode\ directory contains all the fortran code required to
construct the programs on a VAX computer. The \agram\pccode\ directory

1 Note that earlier versions of these two compilers are not suitable for this software.

 page G-4 BAP
 Programming 01mar92

Version 1.0

contains code that, when added to the code from \agram\vaxcode\, can be used to
construct the programs on a PC. At the time this is written, the following files are
given in the \vaxcode\ and \pccode\ directories:

 \agram\vaxcode\bap.vax \agram\pccode\l32bap.add
 " msfbap.add
 " tsplot.vax " msftsp.add
 " fasplot.vax " msffas.add
 " bbdata.vax " msfbbdat.add
 " small.vax " msfsmall.add
 " agramlib.vax " L32aglib.add
 " msfaglib.add
 " ofrcode.vax

The ofrcode.vax file contains a copy of just those parts of the BAP code that are
listed in Appendix H.

 The \agram\masmobjs\ directory contains the assembled version of
subroutine lgetenv, the single AGRAMLIB subroutine that is coded in assembly
language. (It is only used in the msf version of AGRAMLIB.) The object code is
given here so users who recompile the Fortran subroutines will not need to buy an
assembler (or deal with the DOS DEBUG command). Subroutine lgetenv is called
from msfplots.for, one of the component files in msfaglib.add. Lgetenv is
used to retrieve the value the user may have assigned to the msfonts environment
variable. A do-nothing, Fortran alternative version of lgetenv is given as
lgetenv.fff in the msfaglib.add file.

 The \agram\4msf\ and \agram\4L32\ directories contain miscellaneous
files, primarily .bat files, that the author uses in conjunction with the Microsoft and
Lahey fortran compilers, respectively. These files are provided as a convenience to
users, and their use is not essential. Those who choose to make use of the files in
\agram\msf\ and \agram\4L32\ must tailor them to their own computers, for the
files contain drive and directory designators that will probably not be appropriate for
PCs other than the one used by the author. Files in \agram\4msf\ include:

 4msf.bat is used for preliminary setup. It defines compiler-related

environment variables, adds \agram\4msf\ to the DOS PATH,
and, if a RAM disk is available, copies the compiler there.

 ftnset.bat changes the default compiler and linker options.
 ftn.bat invokes the compiler. To compile a fortran file named abc.for,

for example, one could use: dos> ftn abc
 mak.bat invokes the Microsoft NMAKE utility according to the author's

preferences. To invoke the NMAKE commands in the
msfaglib.mak file (which is a component file in
msfaglib.add), one could use: dos> mak msfaglib

Lahey-compiler counterparts to each of these Microsoft-compiler specific files are
available in \agram\4L32\.

G.3 Computers other than PCs

 Code is distributed for computers other than PCs on unlabeled, 9-track tape.
The first file on the tape contains a table of contents that briefly describes the content
of each of the other files on the tape. Note that the tape contains Fortran source code
only: no executable files.

 BAP page G-5
 01mar92 Programming

Version 1.0

 If one were installing the programs on a computer other than a VAX or a PC,
new versions of the machine-dependent or site-dependent code in the AGRAMLIB
subroutine library would need to be coded. There is very little such code and it is
isolated in separate subroutines, with two or more alternative versions given in the
distributed code. Although the alternatives provided may not be entirely suitable for
the new machine, they provide comments, examples, and frameworks that should
help in the construction of new versions. PC alternatives are given in the
msfaglib.add and L32aglib.add files and generic, do-nothing or do-little,
alternatives are given in the agramlib.vax file. The generic alternatives have the
same file-name prefix as the VAX and PC versions and a suffix of .fff. For
instance, subroutine woe is used for error diagnostics: there is a woe.for and a
woe.fff in the agramlib.vax file, another woe.for in the msfaglib.add file,
and yet another is in the L32aglib.add file. Information about each of the .fff
files is given in the progagram.nts file.

 A few changes might need to be made to the distributed version of scattr.for
before it would work appropriately on other than VAX or PC computers too.
Scattr.for contains open statements that may need to be modified on other
machines. Non-standard portions of the open statements are flagged with comments
containing three number-signs (###), as is done with all non-standard statements in
the AGRAMLIB code. The Fortran symbol cmputr that identifies the target
computer ought to be changed also. Code that translates from Fortran conventions
used in .vax files to conventions appropriate to the target machine may be added
also. Refer to those sections of the scattr.for code that refer to cmputr and
konvrt.

G.4 Plotting Code

 The plotting code used in BAP and its support programs can be modified readily
to work with various plotting packages. The important plotting functions work
through calls to a set of three simple subroutines that can be modified to invoke
whatever plot software is available. The three required subroutines are provided by
many plotting packages, for they are the three most basic CalComp-style subroutines
(plots, plot, and symbol). These "CalComp compatible", or "basic pen plotter
software", subroutine call-sequences are a de facto standard. Many plotters other
than CalComp plotters are manipulated with these calls and many other plotters
provide a "CalComp-compatible" interface to their own intrinsic software. Where a
CalComp interface is not available, however, interface versions of the three required
CalComp-compatible plotting subroutines will need to be built to connect
AGRAM/BAP plotting calls to the desired plot software.

 There are a few auxiliary plotting subroutines required by the AGRAM/BAP
plotting programs in addition to the three basic Calcomp-style subroutines. Generic,
do-nothing or do-little versions of these subroutines are provided among the
distributed source-code files. Several versions of the fundamental-plus-auxiliary
plotting subroutines are included among the BAP distribution files: The versions in
apsplots.for write the AGRAM-PostScript files; the versions in msfplots.for
plot to a PC screen via subroutines provided by the Microsoft compiler; the versions
in vwrplots.for plot via the site-specific VIEWER/PLOTLIB plotting software
available on the USGS VAXes in Menlo Park; and the versions in calcomp.fff
combined with pltsubs2.fff are generic versions that do not actually plot. The
three subroutines in calcomp.fff provide templates of the argument lists of the

 page G-6 BAP
 Programming 01mar92

Version 1.0

fundamental plotting subroutines; comments in the file give descriptions of the
function of each subroutine and each argument. The several subroutines in
pltsubs2.fff are generic versions of the auxiliary plotting subroutines.

G.5 Sample Code

 Two little sample programs, named BBDATA and MAKEVEE, are included with
the BAP distribution files. BBDATA illustrates how to used the BBFIN and BBFOUT
subroutines on the AGRAMLIB subroutine library to read and write blocked-binary
time-series data files. BBDATA also illustrates how to use the GENPLT plotting
subroutine on AGRAMLIB. MAKEVEE is even simpler than BBDATA: All it does is
create a nonsense time series then call subroutine BBFOUT to write the time series out
to a blocked binary data file. MAKEVEE is probably all one would need as an
example in order to write a program that would convert an input time-series file in
some arbitrary format to an output time-series file in the blocked-binary format that
BAP and its support programs can read.

 Source code for the two sample programs are in the
\agram\vaxcode\bbdata.vax and \agram\pccode\msfbbdat.add files. The
first set of comment lines in the msfbbdat.add file gives instructions for compiling
and linking the sample programs when using the Microsoft Fortran compiler and
using several of the .bat files in \agram\4msf\. Since both sample programs
call subroutines that are on the AGRAMLIB subroutine library, one would need to
compile and build the library before MAKEVEE or BBDATA could be linked
successfully. Instructions for creating the library are given in the first set of comment
lines in the \agram\pccode\msfaglib.add file.

G.6 Programming Notes

 The progbap.nts and progagram.nts files given among the distribution
files (in c:\agram\docs\ on a PC) contain miscellaneous notes about various
programming conventions used in the code. The progbap.nts file contains notes
about the BAP program alone; the progagram.nts file contains notes that apply to
all the AGRAM programs and the AGRAMLIB subroutine library.

 Among other things, the progbap.nts file contains a subroutine call diagram
that lists each subroutine in BAP, which subroutine(s) called it, which subroutines it
calls, and a brief explanation of what the subroutine does. Progbap.nts and
progagram.nts also contain guidelines for modifying the code to:

 ∙ change the plot interface
 ∙ add new input or output data file formats
 ∙ change the get-command line subroutine
 ∙ add a new run parameter and corresponding new fortran variable.

 BAP page H-1
 01mar92 Fortran Code

Version 1.0

Appendix H

Fortran Code

 The Fortran subroutines that perform the important calculations in BAP are
printed in this appendix. Omitted from this appendix, however, are the subroutines
that are involved with overhead processes like command-line interpretation, error
handling, and input/output operations. The entire program, including the overhead
subroutines, is available on floppy diskettes or magnetic tape: See Appendix D.

 The Fortran files printed in this appendix are:

Name Function
BAP2.FOR coordinates the whole process. BAP2 is called from BAP (the

"main" subroutine) to keep the time-series processing
functions, which are handled in BAP2, separate from the
overhead and input functions, which are handled in BAP.

BAPSPS.FOR linearly interpolates the time series to a new sampling interval.
BAPPAD.FOR adds zero-padding before and after the time series and, if

requested, applies a tapering option to the discontinuities
between the data and the pads.

FDIC.FOR applies instrument correction and/or a high-cut filter to the
time series. The time series is transformed to the frequency
domain, where the instrument correction and filter are
applied, then transformed back to the time domain.
FDIC.FOR was originally written as subroutine INSCOR by
William Joyner at the USGS. Minor modifications and all the
comments were added by April Converse at the USGS.

BIHIP.FOR applies a high-pass (a.k.a. "low-cut") bidirectional Butterworth
filter to the time series. BIHIP was originally written as
subroutine BUTWOR by Keith McCamy while at Lamont-
Doherty Geological Observatory of Columbia University. It
is included in BAP by permission from Lamont-Doherty.
Minor modifications have been made to the subroutine by
members of the USGS.

BAPFAS.FOR calculates Fourier amplitude spectrum.
BAPRSC.FOR calculates response spectra for several damping values by

calling subroutine CMPMAX. For each spectrum, BAPRSC
calls CMPMAX for each period used to represent the
spectrum.

 page H-2 BAP
 Fortran Code 01mar92

Version 1.0

CMPMAX.FOR calculates maximum relative-displacement response, maximum
relative-velocity response, and maximum absolute-
acceleration response of the input acceleration time series for
a given oscillator period and damping fraction.

 CMPMAX was written by I.M. Idriss and is included in BAP by
permission from the author. The subroutine is also part of
the SHAKE program (reference [19]), which is distributed by
the Earthquake Engineering Research Center of the
University of California in Berkeley, California.

The following subroutines are called from BAP2.FOR, but are not included in the
appendix themselves:

Name Function
BAPOUT.FOR is the BAP output subroutine. It writes a summary of the

current time series (max. value, min. value, etc.) to the run-
messages file and to the user's computer screen; writes the
time series to an output file, if requested; and plots the time
series, if requested. BAPOUT is called from BAP after each
processing step.

LINCOR.FOR Applies a linear correction by subtracting a straight line from
the time series, the line being a constant provided by the
user, the mean value of the time series, or the linear least-
squares fit to the time series.

PADLEN.FOR determines the lengths of the leading and trailing zero pads to
be added (by subroutine BAPPAD) to the time series.

BAPFAP.FOR plots Fourier Amplitude spectra.
BAPRSI.FOR sets up the period and damping lists that will be used by the

response spectra-calculating subroutine, BAPRSC.
BAPRSP.FOR plots the response spectra calculated in BAPRSC.
IDSTEP.FOR is called from BAP to write information about the current

processing step to the run-messages file and to the user's
screen. This is a separate subroutine merely to keep run-
message formatting clutter out of the main subroutine. For
the PAD and AVD steps, IDSTEP also does some
preliminary checking of the step's run parameters, again just
to keep clutter out of the main subroutine.

BAPC.FOR sets the output file name and a plot label, given the current step
number and a type-of-motion identifier.

The following subroutines from the AGRAMLIB subroutine library are referenced by
the code shown in this appendix, but are not included in the appendix themselves:

Name Function
WOE is used to trap coding errors. It prints a trace-back of subroutine

calls, then aborts the program. Many of the calls to WOE in
the subroutines shown in this appendix trap user input
errors that should have been caught by the command-line
interpreting subroutine. The subsequent tests for this type
of error, and other seemingly redundant error tests, merely
double-check to make sure that user errors haven't slipped

 BAP page H-3
 01mar92 Fortran Code

Version 1.0

through the primary error-handling procedures or that
programming errors have not been introduced.

LNBC returns the location of the last non-blank character in a given
character string. Returns 0 if the character string is blank.

LNBC1 is like LNBC, but returns 1 rather than 0 if the character string is
blank.

SSOUT retrieves characters from the character-string heap maintained
by the AGRAMLIB SSSUBS.FOR subroutines.

NPWR2 returns the nearest integral power of 2 that is equal to or greater
than the NPWR2 function argument. NPWR2 is called from
BAPFAS.

REALFT applies an FFT transform to a real-valued time series, returning
a complex-valued frequency-domain series. REALFT is
called from ccFFT.

 REALFT and subroutine FOUR1b, which is called by REALFT,
are copyrighted (C), 1986, by Numerical Recipes Software.
They are reproduced in the AGRAMLIB library, with
permission, from the book Numerical Recipes: the Art of
Scientific Computing, (Reference [18]). These 2 subroutines
are modified versions of subroutines written by Norman
Brenner at MIT Laboratory in 1967.

ccFFT calls subroutine REALFT and takes the complex conjugates of
the frequency-domain samples that are returned from or
given to REALFT. CCFFT is called from FDIC and from
BAPFAS.

 The conjugates are used because the definition of the Fourier
transform used in the Numerical Recipes text book (and
others) has a positive sign on the exponent in the integrand
for transformation from the time to frequency domain and a
negative sign on the exponent for transformation from
frequency to time domain (page 381). The defining
equations in other text books (e.g., Bracewell: The Fourier
Transform and its Applications, page 7 and 177), and those
assumed for AGRAM programs, have the opposite signs on
the exponents.

 Most of the code in the BAP program and the AGRAMLIB subroutine library
was written by April Converse at the USGS. Subroutines written by others have the
author's name indicated in the first set of comments in the Fortran code.

 A file containing just the code that is listed in this appendix is given among the
BAP distribution files at c:\agram\vaxcode\ofrcode.vax. The
c:\agram\vaxcode\bap.vax file also contains all the code listed in this
appendix, but the bap.vax file contains all the bap code, rather than just that
shown here.

 page H-4 BAP
 Fortran Code 01mar92

Version 1.0

H.1 Include Files

 The "include" files printed in this section contain fragments of Fortran code that
are incorporated, via "include" statements, into the compilable Fortran files that are
printed in subsequent sections. The include files used in BAP contain common
declarations and symbolic constant definitions. Each of the include files is referenced
from several Fortran files. These include files allow a single definition of a common
or constant to be referenced from many fortran files.

H.1.a BAPCONST.INC

 This include file defines miscellaneous constants that are used in various places
in the BAP code.

c -------- begin bapconst.inc -------
c
c BAPCONST.INC defines constants that are used in various
c places in the BAP code.
c
c IFLAG = integer representing "undefined"
c RFLAG = real number representing "undefined"
c SMALL = small, real number
c TINY = extremely small real number
c HUGE = extremely large real number
cc
 parameter (iflag=-12345, rflag = -1.23456e+20)
 parameter (small=1.0e-5, tiny = 1.0e-20)
 parameter (huge =1.0e+20)
c -------- end of bapconst.inc -------

H.1.b BAPSTEPS.INC

 This include file is itself included in the runparam.inc file. It defines
constants that represent the BAP processing steps.

c -------- begin bapsteps.inc -------
c
c BAPSTEPS.INC defines constants that are used as indexes into the
c MDO(), MWDATA(), and MPLOT() arrays. Each index
c represents one of the processing steps that may be
c called in BAP.FOR. MDO() is declared only in
c BAP.FOR; MWDATA() and MPLOT() are declared in
c BAPINOUT.INC and are used by subroutine BAPOUT
c and its subordinates.
cc
 parameter (kinput= 1, kintrp= 2, kline = 3)
 parameter (kpad = 4, kinsc = 5, khicut= 6)
 parameter (kdecim= 7, klocut= 8, kavd = 9)
 parameter (kfas =10, kresp=11, knstep=11)
c -------- end of bapsteps.inc -------

 BAP page H-5
 01mar92 Fortran Code

Version 1.0

H.1.c RUNPARAM.INC

 This include file declares variables that are set by the BAP input subroutine,
BAPIN, and its subordinates. The values are acquired from the user's command line
and @-files and from the input time-series data file.

c -------- begin runparam.inc -------
c
c RUNPARAM.INC declares variables that are set by the BAP input
c subroutine, BAPIN, and its subordinates. Values are
c acquired by reading the user's run parameters file
c (or command line) and the input time series data file.
c Other similar variables are declared in BAPINOUT.INC.
c The distinction between the two .INC files is that
c the contents of RUNPARAM.INC are needed by BAP.FOR and
c its time-series processing subroutines; the contents
c of BAPINOUT.INC are only needed by the output
c subroutines.
cc
 include 'bapsteps.inc'
cc
 logical mdo(knstep), mllsqf, mmean, velfit, locut2, cliprs
 double precision dptim1
 parameter (mxsdmp=20, mxsper=200)
cc
 common /runpar/ mdo, motion, dptim1,
 x spsin,spsnew,
 x vline, mllsqf, mmean, beglin,endlin, begfit,endfit,tapfit,
 x jpad, padsec(2), mtaper(2), tapsec(2),
 x pins,dins,
 x hitbeg,hitend,
 x ndense,
 x corner, nroll,
 x velfit, locut2,
 x nsmoo,
 x cliprs, sdamp(mxsdmp), sper(mxsper), sdper(mxsper)
cc
c a) general parameters:
c MDO() = indicates whether or not to perform each processing
c step.
c MOTION = 1, 2, or 3 if input time series is acceleration,
c velocity, or displacement. MOTION = 4 if the type
c of motion is unknown, but treated as though it
c were acceleration.
c = -1 if uncorrected acceleration (i.e., data comes from
c an 'IR' BB file (=a SCALE output file).)
c DPTIM1 = time of the first sample. This is usually = 0.0
c as it comes from BAPIN, but it will be reduced later
c if a leading pad is added to the time series.
c DPTIM1 will be less than 0.0 from BAPIN if the
c input file that BAPIN read was a AGRAM BBF that
c contains a padded time series.
c
c b) interpolation parameters:
c SPSIN = sampling rate of the input time series, samples per
c second. Usually = 200.
c SPSNEW = sampling rate requested for the time series after
c interpolation (if any) and before decimation (if
c any). Usually = 200 = SPSIN.
c
c c) linear correction parameters:
c BEGLIN = first time at which line should be subtracted
c ENDLIN = last "
c BEGFIT = first time to be included in the llsq fit or calculation
c of the mean value.
c ENDFIT = last "
c VLINE = a constant that should be subtracted from every
c sample in the time series that occurs at or
c between BEGLIN and ENDLIN
c MMEAN = .TRUE. if the mean value of the time series between
c BEGFIT and ENDFIT should be subtracted from
c the section of the time series at and between
c BEGLIN and ENDLIN.
c MLLSQF = .TRUE. if the linear least square fit to the

 page H-6 BAP
 Fortran Code 01mar92

Version 1.0

c time series between BEGFIT and ENDFIT should
c be subtracted from the section of the time series
c at and between BEGLIN and ENDLIN.
c
c d) padding parameters:
c PADSEC(1 & 2) = length of the leading and trailing pad
c areas, in seconds.
c MTAPER(1 & 2) = tapering option, one for each end of the
c time series. Usually = 0.
c = 0=> notaper,
c = 1=> zcross,
c = 2=> datataper,
c TAPSEC(1 & 2) = taper length used with the datataper option.
c Given as number of seconds in the taper.
c Usually= 0.2.
c
c e) instrument correction parameters:
c PINS = period of the recording transducer, in seconds,
c usually about 0.06.
c DINS = damping of the recording transducer, fraction of
c critical damping, usually about 0.6.
c
c f) high-cut filter parameters;
c HICUTT, HICUTZ = the transition band, in Hz, for the hi-cut
c filter that is applied along with the instrument
c correction. HICUTT is usually 50 and is the
c frequency at which the cosine taper begins: the end
c of the pass band. HICUTZ is usually 100 and is the
c frequency at which the cosine taper ends: the
c beginning of the stop band.
c
c g) decimation parameters:
c NDENSE = ratio of the dense sample rate to the final sample
c rate. The decimation step removes NDENSE-1 of
c every NDENSE samples. Default NDENSE = 3.
c
c h) low-cut filter parameters:
c CORNER = corner frequency for the low-cut, bi-pass Butterworth
c filter.
c MROLL = roll-off parameter for the low-cut, bi-pass Butterworth
c filter.
c
c i) FAS parameters:
c NSMOO = ***
c
c j) RSPEC parameters:
c SDAMP()= ***
c SPER ()
c SDPER()
c
c k) debug/test/development parameters:
c JPAD,LOCUT2, CLIPRS
c -------- end of runparam.inc -------

H.1.d BAPUNITS.INC

 This include file declares the common that will contain the names and units of
the three types of time series that are manipulated by BAP: acceleration, velocity and
displacement.

c -------- begin bapunits.inc -------
c
c BAPUNITS.INC declares /UNITS/, the common that contains the names
c and units of the 3 types of time series that are
c manipulated by BAP: acceleration, velocity and
c displacement. The contents of /UNITS/ is assigned
c in subroutine BAPDEF.
cc
 character*(12) csname(4)
 character*(10) csunit(4)
 common /units/ csname, csunit
c -------- end of bapunits.inc -------

 BAP page H-7
 01mar92 Fortran Code

Version 1.0

H.1.e TEMPCS.INC

 This include file declares space used for temporary character strings.

c ---- begin TEMPCS.INC ---
c
c TEMPCS.INC declares /TEMPCS/ the common used for a temporary
c character string. We're putting this in a common
c just so it can be shared, avoiding the need for
c everyone to declare their own temporary character
c string.
cc
 character*132 tempcs
 common /tempcs/ tempcs
c ---- end TEMPCS.INC ---

H.1.f FILNAM.INC

 This include file allocates character space used for constructing a file names. It
also defines symbolic constants that are machine-dependent and are related to the
file naming conventions used on the relevant computer.

c --- begin filnam.inc ---
c FILNAM.INC, VAX version.
c FILNAM.INC defines symbolic constants that are machine-dependent and
c are related to the file names.
c
c YNAMF = maximum number of characters in a file name.
c VEROKC= .true. if it is OK to have version fields in the file name.
c LCLDIR= characters that represent the local working directory when
c appearing in a file name. = '[]' on the VAXes.
c SCRFIL= characters that indicate the name and location of a file
c the various AGRAM programs can use as a temporary scratch file.
c
c FILNAM.INC also allocates space in /CFILNM/. It contains:
c FILNAM = Character space used for constructing a file name.
cc
 integer YNAMF
 parameter (YNAMF=128)
 logical verokc
 parameter (verokc = .true.)
 character*2 lcldir
 parameter (lcldir = '[]')
 character*17 scrfil
 parameter (scrfil = 'scr:agramjunk.tmp')
cc
 character*128 filnam
 common /cfilnm/ filnam
c --- end of filnam.inc ---

 page H-8 BAP
 Fortran Code 01mar92

Version 1.0

H.2 BAP2.FOR

 Coordinates all the time-series processing functions. BAP2 is called from BAP
(the "main" subroutine) to keep the time-series processing functions, which are
handled in BAP2, separate from the overhead and input functions, which are
handled in BAP.

 subroutine BAP2 (fmtin,lunusr,lunmsg,lundsk,lundin,luntmp,lundot,
 x workA,
 x workB,
 x workC, lenwrk, nwork,inpadl,inpadt)
 character*3 fmtin
 real workA(lenwrk), workB(lenwrk), workC(lenwrk)
cc
c BAP2 is called from BAP to co-ordinate the time-series processing
c functions separate from the overhead and input functions,
c which are performed in BAP.
cc
c On entry --
c FMTIN = format of the input time-series data file.
c = 'BBF' or 'SMC'.
c LUNUSR,LUNMSG,LUNDSK,LUNDIN,LUNTMP,LUNDOT
c = logical unit numbers. See comments in BAP.FOR.
c WORKA() = array containing the input time series.
c WORKB() = empty array available for work space.
c WORKC() = "
c LENWRK = length of WORKA, B, & C.
c NWORK = the number of time-series values in WORKA(). This
c is the number of samples if we are dealing with
c evenly-sampled data, or 2* the number of samples
c if we are dealing with unevenly-sampled data.
c INPADL = number of leading pad samples in the input time
c series. INPADL usually = 0.
c INPADT = number of trailing pad samples in the input time
c series. INPADT usually = 0.
c
c And the commons declared in RUNPARAM.INC have been filled with
c run parameters acquired from the users command line and the
c input time-series data file. See comments in the RUNPARAM.INC
c file for description of each variable therein.
cc
c Commons and symbolic constants:
cc
 include 'runparam.inc/nolist'
 include 'bapconst.inc/nolist'
 include 'tempcs.inc/nolist'
 include 'filnam.inc/nolist' ! *** will tempcs do?
cc
c Time calculations often will be done in double precison:
cc
 double precision dpdelt, dpv, dpd, hdt
 double precision dpvlst, dp
cc
c Miscellaneous local variables:
cc
 character*1 onec
 logical opened, skip, dbgz, doit, tfjunk
 parameter (dbgz=.false.)
cc
c SPS and DPDELT = current samples-per-second and sampling-interval.
cc
 sps = spsin
 if (sps .gt. small) then
 dpdelt = dble(1.0)/dble(sps)
 else
 dpdelt = 0.0
 endif
cc
c Plot and/or rewrite the input time series, if requested.
cc
 write (lunmsg, 1401) fmtin
 if (lunusr.ne.lunmsg) write (lunusr, 1401) fmtin
 call BAPOUT (kinput, motion, lunmsg,lunusr,lundot,lundin,

 BAP page H-9
 01mar92 Fortran Code

Version 1.0

 x spsin, dptim1, dpdelt,
 x workA,lenwrk,nwork,
 x inpadl, nwork-inpadl-inpadt, inpadt)
cc
 do 20 i = 1,knstep
 if (i.ne.kinput .and. mdo(i)) goto 21
 20 continue
 goto 900
 21 continue
cc
c INTERP step:
c Interpolate to SPSNEW samples per second, if necessary.
c (SPSNEW usually = 200 samples per second.)
c If the time series came from the Strong-Motion Catalog CD-ROM,
c it will already be evenly sampled at 200 samples per second.
c If the time series came from a BES&G blocked-binary data file,
c however, it may be unevenly sampled (x,y) data or evenly
c sampled at something other than 200 samples per second.
c The interpolating subroutine, BAPSPS, leaves the interpolated
c time series in workB(). Copy the contents of workB() back to
c workA() with subroutine WCOPY.
cc
 if (spsin .ne. spsnew) then
 call IDSTEP (kintrp,junk,trash,lunmsg,lunusr,tfjunk)
 nnn = nwork
 sps = spsin
 call BAPSPS (lunmsg,lunusr, sps, spsnew, dptim1,
 x workA,workB,lenwrk,nwork)
 dpdelt = dble(1.0)/dble(sps)
 if (inpadl+inpadt .gt. 0) then
 if (spsin.le.tiny) call woe(0)
 f = sps/spsin
 inpadl = int(f*real(inpadl))
cwas: inpadt = int(f*real(inpadt)) ! what if BAPSPS truncated?
 nnn = nint (f*real(nnn-inpadt))
 if (nnn.lt.nwork) then
 inpadt = nwork-nnn-1
 if (f.gt.1.0) inpadt=inpadt+nint(f)
 else
 inpadt = 0
 endif
 endif
 call BAPOUT (kintrp, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workB,lenwrk, nwork,
 x inpadl, nwork-inpadl-inpadt, inpadt)
 call WCOPY (workB,workA, nwork)
 endif
cc
c LINear CORrection: subtract a straight line from the time series
c in workA(). The line can be the linear least squares fit to the
c time series, the mean value of the time series, or a constant
c (=VLINE) specified by the user.
c This step should not be necessary for time series from the Strong-
c Motion Catalog CD-ROM.
cc
 if (mdo(kline)) then
 write (lunmsg,1403)
 if (lunmsg.ne.lunusr) write (lunusr,1403)
 call LINCOR (lunusr, lunmsg, dptim1,dpdelt,
 x vline, mmean, mllsqf, velfit,
 x beglin,endlin, begfit,endfit,tapfit,
 x worka,nwork, trash)
 call BAPOUT (kline, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA,lenwrk,nwork,
 x inpadl, nwork-inpadl-inpadt, inpadt)
 endif
cc
c PAD step, part 1
cc
c Add a series of leading and trailing zeros to the time series,
c then (if requested) smooth the discontinuity between the data
c and the pad areas according to the tapering option, MTAPER.
c WorkA() contains the time series before and after this step.
c
c Pad-related local variables:
c NDATA = number of samples of recorded data
c NPADL = " in the leading pad
c NPADT = " in the trailing pad
c NPANDD= " in the data + pads

 page H-10 BAP
 Fortran Code 01mar92

Version 1.0

c NEWLZ = number of leading zeros to add to the leading pad
c (most input time series will *not* have any leading
c pad to begin with, but some will).
c NEWTZ = number of trailing zeros to add to the trailing pad.
c MORELZ= number of leading zeros to add to the leading pad in
c the second padding step. Used only when JPAD=4.
c MORETZ= number of trailing zeros to add to the trailing pad
c in the second padding step.
c
c The padding sequence is controlled by JPAD (in RUNPARAM.INC):
c JPAD=0 => do all the padding here, before the INSCOR step.
c If the FAS step has been requested, extend the trailing
c pad so the number of points, NPANDD, will be an integral
c power of 2. NPANDD = 2**N. Problems with this method:
c - the time series is uneccessarily long during the
c time-consuming INSCOR step. INSCOR just crunches
c along on a zero-valued time series for most of its
c effort.
c - the 2**N requirement makes for an outrageously long
c time series, especially if the time series is going
c to be decimated after INSCOR, before FAS.
c - the INSCOR step needs some overlap space after the
c end of the time series, so LENWRK should be greater
c than 2**N, which we don't want to do on 80x86
c machines.
c JPAD=1 = JPAD=0, but don't bother padding out to 2**N as requred
c for the FAS step here, wait and do that during the
c FAS step itself.
c JPAD=2 => Do the padding before the LOCUT step rather than before
c the INSCOR step. Pad out to 2**N before LOCUT if the
c FAS step is requested.
c JPAD=3 = JPAD=2, without padding out to 2**N if FAS is requested
c (wait and do the FAS required padding in the FAS step).
c Problem with JPAD = 2 or 3: There are tiny filter
c transients from the high-cut filter applied with the
c INSCOR step. They should really be included in
c the integrations done in the AVD step. They are much
c less significant than the transients from the low-cut
c filter step, however.
c JPAD=4 => add relatively short pads before the INSCOR step,
c then extend the pads before the AVD step and again
c before the FAS step. Problem: we need to investigate
c how long the before-INSCOR pads need to be (they don't
c seem to be required at all) and make certain that the
c ends of the pads approach zero before extending them.
c >> JPAD=5 = JPAD=4 if the hicut filter is performed; = JPAD=3 if
c not. JPAD=5 has the same effect as JPAD=4, the only
c difference being that a diagnostic message is
c suppressed when JPAD=5.
cc
 npandd = nwork
 ndata = npandd - inpadl -inpadt
 npadl = inpadl
 npadt = inpadt
 morelz = 0
cc
 call IDSTEP (kpad,1,trash,lunmsg,lunusr,doit)
 if (doit) then
 call PADLEN(lunusr, lunmsg, padsec, npadl, npadt,
 x newlz, morelz, newtz, moretz, npydbf,
 x ndata, lenwrk, iflag, rflag, mdo,
 x sps, corner, nroll, ndense, jpad)
 if (morelz+newlz.gt.0 .or. newtz.gt.0) then
 call BAPPAD(lunmsg,lunusr, mtaper, tapsec, sps,
 x workA(1),
 x morelz, newlz, npadl+ndata+npadt, newtz)
 npadl = npadl + newlz
 npadt = npadt + newtz
 npandd= npandd + newlz + newtz
 dptim1 = dptim1 - dble(newlz)*dpdelt
 call BAPOUT (kpad, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA(morelz+1),lenwrk-morelz,
 x npandd, npadl, ndata, npadt)
 endif
 endif
cc
c INSCOR and HICUT steps:
c Instrument correct and/or apply a high-cut filter.
c WorkA() contains the time series before and after this step.
cc

 BAP page H-11
 01mar92 Fortran Code

Version 1.0

 call IDSTEP (kinsc,nowstp,trash,lunmsg,lunusr,doit)
 if (doit) then
 ndone = -1
 call FDIC(lunmsg,lunusr,workA(morelz+1),npandd,ndone,
 x lenwrk-morelz,
 x dpdelt, mdo(kinsc), pins,dins,hitbeg,hitend)
 if (motion.lt.0) motion = -motion
 if (dbgz) call SHOWZ (npadl,ndata,npadt,workA(morelz+1),npandd)
 if (jpad.eq.0 .and. ndone.lt.npandd .and. ndone.gt.npydbf) then
 do 140 i = morelz+ndone+1, morelz+npandd
 workA(i)=0.0
 140 continue
 ndone = npandd
 endif
 if (ndone.lt.npandd) then
 write (lunmsg, 2001) npandd, ndone, lenwrk
 if (lunmsg.ne.lunusr) write (lunusr, 2001)
 x npandd, ndone, lenwrk
 npandd = ndone
 if (ndone.gt.npadl+ndata) then
 npadt = ndone -npadl-ndata
 else if(ndone.gt.npadl) then
 npadt = 0
 ndata = ndone -npadl
 endif
 endif
 call BAPOUT (nowstp, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA(morelz+1),lenwrk-morelz,
 x npandd, npadl,ndata,npadt)
 endif
cc
c DECIMation: reduce the sampling rate by removing NDENSE-1
c of every NDENSE samples.
c WorkA() contains the time series before and after this step.
cc
 if (mdo(kdecim) .and. ndense.gt.1) then
 dp = sps
 dp = dp/dble(ndense)
 call IDSTEP (kdecim,junk,sngl(dp),lunmsg,lunusr,doit)
 if (doit) then
 sps=sngl (dp)
 dpdelt = dble(1.0)/dp
cc
 n = npadl/ndense
 n = npadl - n*ndense
 j = morelz
 do 110 i = morelz+1+n, morelz+npandd, ndense
 j = j+1
 workA(j) = workA(i)
 110 continue
cc
 npandd = j - morelz
 npadl = npadl/ndense
 ndata = (ndata+ndense-1)/ndense
 npadt = npandd-npadl-ndata
cc
 call BAPOUT (kdecim, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA(morelz+1), lenwrk-morelz,
 x npandd, npadl,ndata,npadt)
 endif
 endif
cc
c PAD step, part 2
c WorkA() contains the time series before and after this step.
cc
 call IDSTEP (kpad,2,trash,lunusr,lunmsg,doit)
 if (doit) then
 if (jpad.eq.4) then
 if (morelz+npandd+moretz.gt.lenwrk)
 x moretz = max(0,lenwrk -npandd-morelz)
 newlz =morelz
 newtz =moretz
 call BAPPD2(lunusr,lunmsg,
 x workA, morelz,npadl,ndata,npadt,moretz)
 else
 call PADLEN(lunusr,lunmsg, padsec, npadl, npadt,
 x newlz, junk, newtz, junk2, junk3,
 x ndata, lenwrk, iflag, rflag, mdo,
 x sps, corner, nroll, 1, jpad)

 page H-12 BAP
 Fortran Code 01mar92

Version 1.0

 if (newlz.gt.0 .or. newtz.gt.0) then
 call BAPPAD(lunusr,lunmsg, mtaper, tapsec,sps,
 x workA,
 x 0, newlz, npadl+ndata+npadt, newtz)
 endif
 endif
 if (newlz.gt.0 .or. newtz.gt.0) then
 npadl = npadl + newlz
 npadt = npadt + newtz
 npandd= npandd + newlz + newtz
 dptim1 = dptim1 - dble(newlz)*dpdelt
 call BAPOUT (kpad, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA,lenwrk, npandd, npadl, ndata, npadt)
 endif
 endif
cc
c AVD step, LOCUT2 version: integrate acceleration to velocity
c before the acceleration is filtered; filter velocity; integrate
c velocity to displacement.
c WorkB() contains the new velocity time series after this step and
c WorkC() contains the new displacement time series.
c Write velocity and displacement.
cc
 call IDSTEP (kavd, 0,trash,lunmsg,lunusr,doit)
 if (doit) then
 hdt = dpdelt*dble(0.5)
 dpv =0.0
 alast=0.0
 do 126 i = 1, npandd
 dpv = dpv + (workA(i) + alast) *hdt
 alast = workA(i)
 workB(i)= sngl(dpv)
 126 continue
 call BIhip(workB,npandd,dble(corner),dpdelt,nroll)
 call BAPOUT (kavd, 2, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workB,lenwrk, npandd, npadl, ndata, npadt)
cc
 vlast = 0.0
 dpd = 0.0
 do 124 i = 1, npandd
 vel = workB(i)
 dpd = dpd + dble(vel + vlast)*hdt
 workC(i) = sngl(dpd)
 vlast = vel
 124 continue
 call BAPOUT (kavd, 3, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workC,lenwrk, npandd, npadl, ndata, npadt)
 endif
cc
c LOCUT step: remove long period content with a bidirectional,
c high-pass (=low-cut) Butterworth filter.
c WorkA() contains the time series before and after this step.
cc
 call IDSTEP (klocut,junk,trash,lunmsg,lunusr,doit)
 if (doit) then
 call BIHIP (workA,npandd,dble(corner),dpdelt,nroll)
 call BAPOUT (klocut, motion, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA,lenwrk, npandd, npadl, ndata, npadt)
 if (dbgz) call SHOWZ (npadl,ndata,npadt, workA, npandd)
 endif
cc
c AVD step, standard version (locut2=.false.):
c If input time series is acceleration, integrate acceleration
c to calculate velocity. If the VELFIT option is requested,
c subtract the linear-least-squares fit of the velocity from
c the velocity and subtract the slope of that line from the
c acceleration.
c Or, if the input time series is velocity, differentiate to
c calculate acceleration.
c In either case, once we have a velocity time series, integrate
c that to calculate displacement.
c Include the pad areas in the integration bounds.
c After this step, workA() contains acceleration,
c workB() contains velocity, and
c workC() contains displacement.
cc
 if (.not. locut2) then

 BAP page H-13
 01mar92 Fortran Code

Version 1.0

 call IDSTEP (kavd, 1,trash,lunmsg,lunusr,doit)
 if (doit) then
 hdt = dpdelt*dble(0.5)
cc
c AVD-a) If input is acceleration
c AVD-a.1) Integrate twice to calculate velocity and displacement.
cc
 if (abs(motion).ne.2) then
 dpv =0.0
 dpd =0.0
 alast=0.0
 dpvlst = 0.0
 do 120 i = 1, npandd
 dpv = dpv + (workA(i) + alast) *hdt
 alast = workA(i)
 workB(i)= sngl(dpv)
 dpd = dpd + (dpv + dpvlst) *hdt
 dpvlst = dpv
 workC(i)= sngl(dpd)
 120 continue
cc
c AVD-a.2) If requested, apply the VELFIT option to acceleration and
c velocity, then recalculate displacement.
c Write acceleration.
cc
 call IDSTEP (kavd, 2,trash,lunmsg,lunusr,tfjunk)
 if (velfit) then
 if (npadl.ne.0 .or. npadt.ne.0) then
 write (lunmsg, 2004) npadl, npadt
 if (lunmsg.ne.lunusr)
 x write (lunusr,2004) npadl,npadt
 endif
 call LINCOR (lunusr, lunmsg, dptim1,dpdelt,
 x 0.0, .false., .true., velfit,
 x rflag,rflag, begfit,endfit,tapfit,
 x workB,npandd, slope)
 call IDSTEP (kavd, 3,slope,lunmsg,lunusr,tfjunk)
 vlast = 0.0
 dpd = 0.0
 do 122 i = 1, npandd
 workA(i)= workA(i) - slope
 vel = workB(i)
 dpd = dpd + dble(vel + vlast)*hdt
 workC(i) = sngl(dpd)
 vlast = vel
 122 continue
 call BAPOUT (kavd, 1, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA,lenwrk, npandd, npadl, ndata, npadt)
 endif
cc
c AVD-a.3) Write velocity.
cc
 call BAPOUT (kavd, 2, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workB,lenwrk, npandd, npadl, ndata, npadt)
cc
c AVD-b) If input is velocity, differentiate to calculate acceleration;
c integrate to calculate displacement. Write acceleration.
cc
 else
 write (lunmsg, 1016)
 if (lunmsg.ne.lunusr) write (lunusr,1016)
 vlast = 0.0
 rdt = dble(1.0)/dpdelt
 do 130 i = 1, npandd
 vel = workA(i)
 workB(i) = vel
 workA(i) = (vel - vlast)*rdt
 dpd = dpd + dble(vel + vlast)*hdt
 workC(i) = sngl(dpd)
 vlast = vel
 130 continue
 call BAPOUT (kavd, 1, lunmsg,lunusr,lundot,lundin,
 x sps, dptim1, dpdelt,
 x workA,lenwrk, npandd, npadl, ndata, npadt)
 endif
cc
c AVD-c) Write displacement.
cc
 call BAPOUT (kavd, 3, lunmsg,lunusr,lundot,lundin,

 page H-14 BAP
 Fortran Code 01mar92

Version 1.0

 x sps, dptim1, dpdelt,
 x workC,lenwrk, npandd, npadl, ndata, npadt)
 endif
 endif
cc
c FAS step:
c Calculate and plot the Fourier amplitude spectrum.
c BAPFAS replaces the time series it is given, so copy the
c contents of WorkA(), where the acceleration is now, to
c WorkB() and pass the WorkB() copy to BAPFAS.
cc
 if (mdo(kfas)) then
 write (lunmsg, 1410)
 if (lunmsg.ne.lunusr) write (lunusr,1410)
 call WCOPY (workA,workB, npandd)
 lunfas=0
 call BAPC (lunmsg,lunusr,kfas,1,luntmp,
 x opened, filnam,onec)
 if (opened) lunfas=luntmp
 call BAPFAS(lunmsg, lunusr, lunfas,
 x nsmoo, motion, dpdelt,
 x workB,lenwrk,npandd, nf,deltaf)
 n=lnbc1(filnam)
 call BAPFAP (lunmsg, lunusr, nsmoo, workB,nf,deltaf,
 x kfas,1,filnam(1:n))
 if (lunfas.ne.0) then
 close(unit=lunfas)
 n = min(130-11, n)
 write (lunmsg, 1008) filnam(1:n)
 if (lunmsg.ne.lunusr) write (lunusr,1008) filnam(1:n)
 endif
 endif
cc
c RSPEC step: Calculate and plot response spectra.
c BAPRSI (initialization) sets the period and damping lists.
c BAPRSC calculates a response spectrum for each damping value.
c BAPRSP plots the response spectra.
c The acceleration time series is in workA(), so we can use workB()
c and workC() for work space:
c workC(1 thru NPER)= list of period values assigned in BAPRSI.
c There will be NPER points in each curve (or
c spectrum) plotted by BAPRSP, one for each
c period value.
c workC(1+NPER ...) is used as the PRV(j,k) array in BAPRSC and
c BAPRSP. It receives the maximum pseudo-
c velocity response calculated by BAPRSC for
c the j-th period, k-th damping.
c workB() is used as the RV(j,k) array in BAPRSC and
c BAPRSP. It receives the maximum relative
c velocity response calculated by BAPRSC for
c the j-th period, k-th damping.
c
c SDAMP(1 thru NDAMP)= list of user-specified damping values.
c There will be NDAMP curves on each plot page
c generated in BAPRSP, one curve for each
c damping value.
cc
 if (mdo(kresp)) then
 write (lunmsg, 1411)
 if (lunmsg.ne.lunusr) write (lunusr,1411)
 call BAPRSI(lunmsg, lunusr, rflag, sper, sdper, mxsper,
 x workC, nper, lenwrk, sdamp, ndamp, mxsdmp, skip)
 if (.not. skip) then
 locprv = 1 + nper
 if (locprv + nper*ndamp .gt. lenwrk) call woe(0)
 lunres=0
 call BAPC (lunmsg,lunusr,kresp,1,luntmp,
 x opened, filnam,onec)
 if (opened) lunres=luntmp
 call BAPRSC(lunmsg,lunusr,lunres,sngl(dpdelt),workA,npandd,
 x sdamp, ndamp, workC, nper,
 x workB, workC(locprv))
 if (lunres.ne.0) then
 close(unit=lunres)
 n = min (130-11, lnbc1(filnam))
 write (lunmsg, 1009) filnam(1:n)
 if (lunmsg.ne.lunusr) write (lunusr,1009) filnam(1:n)
 endif
 call BAPRSP(sdamp, ndamp, workC, nper,
 x workB, workC(locprv), sps, cliprs,
 x lunmsg,lunusr,kresp,1,filnam(1:lnbc1(filnam)))

 BAP page H-15
 01mar92 Fortran Code

Version 1.0

 endif
 endif
cc
c Done.
cc
 900 continue
 return
cc
 3000 format (' ')
cc
 1401 format (/5x, 'INPUT time series (input format = ',a,')'
 x /5x, '================='
 x/8x, 'Characteristics of the input time series:')
 1403 format (/5x, 'LINear CORrection step'
 x /5x, '======================')
 1410 format (/5x, 'FAS step' /5x, '========'
 x/8x,'Calculate Fourier amplitude spectrum of acceleration.')
 1411 format(/5x, 'RESPON step', /5x, '=========='
 x/8x,'Calculate response spectra from the acceleration'
 x, ' time series.')
 1412 format(/5x, 'DONE.', /5x, '=====')
 1413 format (8x,
 x'A copy of all the run messages shown here on the screen have'
 x/8x,'been saved in the disk file at: ', a)
 1414 format (8x,
 x'A copy of all the run messages shown here on the screen have'
 x/8x,'been saved in the disk file at: '
 x/8x, a)
cc
 1016 format (5x,
 x'Differentiate the time series (=velocity) to calculate'
 x/8x,'acceleration, integrate to calculate displacement.')
 1008 format(8x,
 x'Output Fourier amplitude file format = BAP text, file name = '
 x/11x, a)
 1009 format(8x,
 x'Output response spectra file format = BAP text, file name = '
 x/11x, a)
 1020 format(/5x,'No plots were generated in this BAP run.')
cc
 2001 format(/3x,
 x' *** WARNING: the padded time series has been truncated from',i8,
 x/8x, 'samples to', i8, ' samples due to lack of space in the'
 x/8x,'working array (length =',i8, ') during instrument correction'
 x/8x,'calculations. ***' /)
 2004 format(/' *** ',3x,
 x 'WARNING: the VELFIT option should usually not be used on a'
 x/11x, 'PADded time series. (npadl=',i8
 x, ' npadt=,'i8,') ***' /)
cccccccccccccccccccc (end of BAP2/BAP)cccccccccccccccccccccccccccccccccc
 end
c
 subroutine WCOPY(work1,work2,npoint)
 real work1(npoint), work2(npoint)
cc
c WCOPY is called from BAP2 to copy the contents of WORK1()
c into WORK2().
cc
 do 100 i =1,npoint
 work2(i)=work1(i)
 100 continue
 return
cccccccccccccccccccc (end of WCOPY/BAP2/BAP) ccccccccccccccccccccccccccc
 end

 page H-16 BAP
 Fortran Code 01mar92

Version 1.0

H.3 BAPSPS.FOR

 Subroutine BAPSPS linearly interpolates the time series to a new sampling
interval.

 subroutine bapsps (lunusr, lunmsg, sps, spsnew, dptim1,
 x workA,workB,lenwrk,nwork)
 double precision dptim1
 real workA(lenwrk), workB(lenwrk)
cc
c BAPSPS: Linearly interpolate the BAP input time series to SPSNEW
c samples per second.
c Note that this subroutine does *not* apply any high-cut
c filter to remove alias errors.
c
c On entry--
c SPS = input sample rate if WORKA() contains an evenly sampled
c series of y-values, or
c = 0.0 to indicate that the input time series is a series
c of unevenly sampled (x,y) pairs.
c SPSNEW = requested new sample rate, usually = 200.
c (SPSNEW must not = SPS, for this subroutine assumes
c that it would not have been called if that were the
c case.)
c DPTIM1 = time of the first sample (almost always = 0.0)
c >>> Note that this is in double precision.
c WORKA() = input time series.
c NWORK = number of values in WORKA().
c LENWRK = maximun length (= dimension) of WORKA() and of WORKB().
c
c On return --
c SPS = SPSNEW = output sample rate
c WORKB() = output time series
c NWORK = number of evenly-sampled points in WORKB()
cc
 include 'bapconst.inc'
 double precision time, timea, timeb, dtold, dtnew
cc
 if (small .gt. spsnew) call woe(0)
 if (small .gt. abs(spsnew-sps)) call woe(0)
cc
 dtnew = dble(1.0)/dble(spsnew)
 nin = nwork
 smidge = small*dtnew
 if (sps .le. 0.0) then
 if (sngl(dptim1).ne.workA(1)) call woe(0)
 yb = workA(2)
 istep= 2
 else
 dtold = dble(1.0)/dble(sps)
 yb = workA(1)
 istep= 1
 endif
 workB(1) = yb
 timeb = dptim1
 time = dptim1 + dtnew
 nwork = 1
 do 30 i = istep+1, nin, istep
 timea = timeb
 ya = yb
 if (istep.eq.1) then
 timeb = dptim1 + dtold*dble(i-1)
 yb = workA(i)
 else
 timeb = workA(i)
 yb = workA(i+1)
 endif
cc
 40 continue
 if (timeb. le.timea + smidge) then
 goto 30
 else if (time .lt. timea) then
 call woe(0)
 elseif (time.ge. timea .and. time.le.timeb) then
 nwork = nwork + 1

 BAP page H-17
 01mar92 Fortran Code

Version 1.0

 if (nwork.gt.lenwrk) then
 nwork = nwork-1
 write (lunmsg,1003) sngl(time), lenwrk
 if (lunmsg.ne.lunusr)
 x write (lunmsg,1003) sngl(time), lenwrk
 call warn ('*',lunusr,lunmsg)
 go to 31
 endif
 workB(nwork)
 x = ya + (yb-ya)*((time - timea)/(timeb-timea))
 time = dptim1 + dtnew*dble(nwork)
 go to 40
 endif
 30 continue
 31 continue
 sps = spsnew
 return
cc
 1003 format (/' *** Truncating time series at ', e13.5,' seconds, due'
 x/5x,'to insufficient space in the working array. Length of the'
 x/5x,'working array =', i8, '. ***' /)
cccccccccccccccccccc (end of BAPSPS) ccccccccccccccccccccccccccccccccccc
 end

 page H-18 BAP
 Fortran Code 01mar92

Version 1.0

H.4 BAPPAD.FOR

 Subroutine BAPPAD adds zero-padding before and after the time series and, if
requested, applies a tapering option to the discontinuity between the data and the
pad.

 subroutine BAPPAD(lunusr,lunmsg,
 x mtaper,tapsec, sps,work,
 x morelz,newlz,ndata,newtz, doit2)
 real work(morelz+newlz+ndata+newtz)
 real tapsec(2)
 integer mtaper(2)
 logical doit2
cc
c BAPPAD pads the time series in WORK() with leading and trailing
c zeros, then smooths the discontinuity between the data and
c the pad areas according to the tapering option, MTAPER.
c
c On entry --
c LUNMSG = lun for run messages = user's terminal or disk file.
c LUNUSR = " = user's terminal.
c MTAPER() = tapering option, one for each end of the time-series:
c = 0=> notaper;
c = 1=> zcross = reset to zero all values for samples
c that occur before the first zero
c crossing or after the last zero
c crossing;
c = 2=> datataper = apply a cosine taper at the end of
c the time series.
c TAPSEC() = taper length used with the datataper option, in
c seconds. TAPSEC indicates the number of points to
c be used in the taper, excluding the endpoints at
c taper-factor = 0.0 and at taper-factor = 1.0.
c SPS = sampling rate
c WORK() = array containing a time-series plus free space for
c padding. The unpadded input time series is in
c locations 1 thru NDATA.
c MORELZ = empty space to be left at the beginning of the padded
c time series. (Will be used in the second padding
c step)
c NEWLZ = number of zeros requested for the leading pad.
c NDATA = number of samples (beginning at WORK(1)) in the
c input time series.
c NEWTZ = number of zeros requested for the trailing pad.
c
c NOTES:
c - Before calling BAPPAD, the caller must make certain that
c there is enough space in WORK() to contain NEWLZ+NDATA+NEWTZ
c samples.
c - NEWLZ and NEWTZ may =0 if tapering is wanted, without the
c padding. (As might be appropriate when VELFIT=.true.)
c
c On return --
c WORK() = contains the padded time series in locations MORELZ +1
c thru MORELZ + newlz + NDATA + newtz.
c DOIT2 = .false. if there really wasn't any padding or tapering
c applied to the time series.
cc
 include 'bapconst.inc'
 include 'tempcs.inc'
 parameter (pi =3.1415926535)
 real ntaper(2)
 logical shift
cc
 lztot = newlz+morelz
 doit2 = .true.
 if (newlz.eq.0 .and. newtz.eq.0) then
 write (lunmsg,1000)
 if (lunusr.ne.lunmsg) write (lunusr,1000)
 if (mtaper(1).le.0 .and. mtaper(2).le.0) then
 doit2 = .false.
 if (morelz.le.0) return
 endif
 endif

 BAP page H-19
 01mar92 Fortran Code

Version 1.0

cc
 ntaper(1) = max(0, nint(tapsec(1)*sps) -2)
 ntaper(2) = max(0, nint(tapsec(2)*sps) -2)
cc
 data1 = work(1)
 datan = work(ndata)
 idata1 = lztot + 1
 idatan = lztot + ndata
cc
c Shift the time series forward in WORK(), to leave room for the
c leading pad.
cc
 shift = .true.
 if (lztot.le.0) shift=.false.
 smidge = 0.0
 do 120 i = idatan,idata1, -1
 if (shift) work(i) = work(i-lztot)
 if (abs(work(i)) .gt. smidge) smidge = abs(work(i))
 120 continue
 if (.not. doit2) return
 smidge = small*smidge
cc
c If the "ZCROSS" taper option was specified, find the first and last
c zero-crossings in the time-series.
cc
 izc1=-1
 izcn=-1
 if (mtaper(1).eq.1 .or. mtaper(2).eq.1) then
 if (abs(data1).lt.smidge) then
 izc1=idata1
 else if (ndata.gt.2) then
 do 31 i=idata1+1, idatan-1
 if (work(i)*data1.lt.0.0) then
 izc1=idata1
 j=i
 if(abs(work(i-1)) .lt. abs(work(i))) j=i-1
 if(abs(work(j)) .lt. abs(data1)) izc1=i
 go to 32
 endif
 31 continue
 32 continue
 endif
 if (abs(datan).lt.smidge) then
 izcn=idatan
 elseif (ndata.gt.2 .and. izc1 .lt. idatan) then
cwas: do 33 i= idatan-1, max(idata1+1,izc1), -1
 do 33 i= idatan-1, max(idata1,izc1-1), -1
 if (work(i)*datan.lt.0.0) then
 izcn=idatan
 j=i
 if(abs(work(i+1)) .lt. abs(work(i))) j=i+1
 if(abs(work(j)) .lt. abs(datan)) izcn=i
 go to 34
 endif
 33 continue
 34 continue
 endif
 if (izcn.le.izc1 .or. izc1.lt.0) then
 write(lunmsg,1101)
 if (lunusr.ne.lunmsg) write(lunusr,1101)
 call warn ('*',lunusr,lunmsg)
 if ((mtaper(1).eq.1 .and. mtaper(2).eq.1) .or.
 x (mtaper(1).eq.1 .and. izc1.eq.-1) .or.
 x (mtaper(2).eq.1 .and. izcn.eq.-1)) then
c +++ call woe(2) +++ do we want to continue here or croak?
 izc1 = idata1
 izcn = idatan
 endif
 endif
 endif
cc
c Begin Loop to pad and taper each end of the time-series.
cc
 do 500 ipad = 1,2
 itap = mtaper(ipad)
 nzdata = 0
 k2beg = 9
 if (ipad.eq.1) then
 tempcs(1:8) = 'leading '
 tempcs(9:13)= 'first'
 k2end = 13

 page H-20 BAP
 Fortran Code 01mar92

Version 1.0

 locbeg = 1
 locend = lztot
 npad = newlz
 ilow = idata1
 jdir = -1
 if (itap.eq.1) then
 locend = izc1 -1
 nzdata = locend - lztot
 endif
 else
 tempcs(1:8) = 'trailing'
 tempcs(9:12)= 'last'
 k2end = 12
 locbeg = 1 + idatan
 locend = newtz + idatan
 npad = newtz
 ilow = idatan
 jdir = 1
 if (itap.eq.1) then
 locbeg = izcn +1
 nzdata = idatan -izcn
 endif
 endif
cc
c a) Pad with zeros and, if requested, extend the zeros into the
c data area, up to the first zero crossing.
cc
 if (locbeg.lt.locend) then
 do 10 i= locbeg,locend
 work(i)=0.0
 10 continue
 write (lunmsg,1002) npad, tempcs(1:8)
 if (lunusr.ne.lunmsg) write (lunusr,1002) npad, tempcs(1:8)
 if (itap.eq.1 .and. nzdata.gt.0) then
 write (lunmsg,1030) tempcs(k2beg:k2end), nzdata
 if (lunusr.ne.lunmsg) write (lunusr,1030)
 x tempcs(k2beg:k2end), nzdata
 endif
 else
 write(lunmsg,1001) tempcs(1:8)
 if (lunusr.ne.lunmsg) write(lunusr,1001) tempcs(1:8)
 endif
cc
c b) If requested, apply a cosine taper at both ends of the data area.
c (cos(0)=1.0; cos(pi/2) =0.0; cos(pi)=-1.0)
c Apply the taper so the lowest point in the taper (0.0) falls at
c the first point in the pad.
c Note that NNN counts the number of interior points in the
c taper, excluding the endpoints at F=1.0 and F=0.0. The
c endpoint at f=1.0 is at sample number IHIGH, the endpoint
c at f=0.0 is the first point in the pad.
cc
 if (itap.eq.2) then
 nnn= ntaper(ipad)
 if (nnn.ge.1) then
 write(lunmsg,1010) tempcs(k2beg:k2end), nnn
 if (lunusr.ne.lunmsg) write(lunusr,1010)
 x tempcs(k2beg:k2end), nnn
 rstep = pi/float(nnn+1)
 ihigh = ilow -jdir*(nnn)
 do 101 j=1,nnn
 f = 0.5*(1.0+cos(rstep*float(j)))
 i = ihigh + j*jdir
 work(i) = work(i) * f
 101 continue
 endif
 endif
cc
c End of loop.
cc
 500 continue
 return
cc
 1000 format(8x,'No padding requested (MORELZ+NEWLZ=NEWTZ=0).')
 1001 format(8x,
 x'The time series has NOT been extended with ', a8, ' zeros.')
 1002 format(8x,
 x'The time series has been extended with',i8, 1x, a8,' zeros.')
 1010 format(11x, 'In addition, the ',a, i8,
 x' input samples were'
 x/11x,'weighted with a cosine taper so the sample values at the'

 BAP page H-21
 01mar92 Fortran Code

Version 1.0

 x/11x,'end of the time-series approach zero.')
 1030 format(11x,
 x'In addition, the ',a, i8
 x,' input samples were reset'
 x,/11x, 'to zero.')
 1101 format(/3x,
 x' *** The ZCROSS option should not be used with this data.'
 x/8x,'The time series does not contain two zero crossings! ***'/)
cccccccccccccccccccc (end of BAPPAD) ccccccccccccccccccccccccccccccccccc
 end

 page H-22 BAP
 Fortran Code 01mar92

Version 1.0

H.5 FDIC.FOR

 Subroutine FDIC applies instrument correction and/or a high-cut filter to the
time series.

 subroutine fdic (lunusr,lunmsg, work,ndata,ndone,lenwrk,dpdelt,
 x minsc, pins,dins,hitbeg,hitend)
 real work(lenwrk)
 logical minsc
 double precision dpdelt
cc
c FDIC, 20feb92 version.
c FDIC applies instrument correction and a high-cut filter to a
c time series that represents response of a strong-motion
c recording instrument. The time series is transformed to
c the frequency domain, where the instrument correction and
c filter are applied, then transformed back to the time domain.
c FDIC is used in the HIFRIC program and in the BAP program.
c
c On entry --
c LUNMSG= lun for run messages = user's terminal or disk file.
c LUNUSR= " = user's terminal.
c WORK()= an array containing an equally-sampled instrument-
c response time-series that has been scaled to
c approximate ground acceleration but has not been
c corrected for diminishing instrument reponse with
c respect to increasing frequency.
c NDATA = number of time-domain samples in WORK().
c If NDATA < LENWRK, then the excess space in WORK(),
c beyond WORK(NDATA), will be filled with zeros.
c NDONE = location of the last value in WORK() to have been
c completely processed during a previous call to FDIC.
c NDONE must= -1 in the first call to FDIC.
c NDONE is used with repetitive calls to FDIC to process
c a time series that will not fit in WORK(). Such
c repetitive calls to FDIC are used in the HIFRIC
c program, but not in the BAP program. NDONE will be
c reset during each call to FDIC. After return from
c FDIC, the caller may dispose of WORK(1 through NDONE),
c shift the uncompleted time-series samples in WORK() to
c the beginning of the array, reset NDONE, then add more
c time series samples into the end of WORK() for
c processing in a subsequent call to FDIC.
c LENWRK= length of the array WORK().
c Want LENWRK .GE. N + an integral multiple of 1024,
c (+ 2 if the ccFFT used here is replaced
c with calls to FORK or RFFT)
c where N = 0 in the first call to FDIC,
c and N = NDONE + NLAP on subsequent calls.
c (NLAP is defined below as 512, but may
c change.)
c DPDELT= time interval between the time-series samples in WORK(),
c in seconds. Usually 1/200 when called from BAP;
c 1/600 when called from HIFRIC.
c >>> Note that DPDELT is in double precision.
c MINSC = .FALSE. if instrument correction is not required, only
c the high-cut filter.
c PINS = period of the recording instrument, in seconds.
c Usually about 0.05.
c DINS = damping of the recording instrument, as fraction of
c critical damping. Usually about 0.6
c HITBEG= Frequency, in Hz., at which the cosine taper in the
c high-cut filter will begin. Usually = 50.
c = end of the "pass band".
c = beginning of the "transition band".
c HITEND= frequency, in Hz., at which the cosine taper in the
c high-cut filter will end. Usually = 100.
c = beginning of the "stop band"
c = end of the "transition band".
c
c On return --
c NDONE = location of the last sample in WORK() that was completely
c processed during the current call to FDIC.
c WORK(1 thru NDONE)
c contains the instrument-corrected portion of the time

 BAP page H-23
 01mar92 Fortran Code

Version 1.0

c series.
c WORK(NDONE+1 thru LENWRK)
c contains partially corrected time series.
c
c
c Authors
c =======
c FDIC was originally written as subroutine INSCOR by William
c Joyner at the USGS in Menlo Park. April Converse modified all but
c the underlying technique in the process of adding all the comments,
c run messages, and modifications that allow FDIC to be called
c repeatedly (in the HIFRIC program) to process a large time series
c that will not fit in the WORK() array.
c
c Warning
c =======
c The NLAP value (see below) was selected as an interval much
c longer than the time required for a corrected, filtered, single
c pulse to decay to (close to) zero. If very different instrument or
c filter characteristics are given than those that are normally
c used (damping=0.6, period=0.05, sampling interval = 0.005, and
c filter transition at 50 thru 100), the NLAP value may be too small.
c Until more analysis and experiments are performed with this
c algorithm, the input parameters should probably be restricted as
c follows:
c HITBEG <= HITEND - 2 (CDMG uses 23-25)
c or preferably HITBEG <= 0.5*HITEND (USGS uses 50 to 100)
c HITEND <= 0.5/DPDELT)
c and PINS < 1.0
c
c To experiment with these requirements, filter a unit pulse using
c the desired values for PINS, DINS, DPDELT, HITBEG, and HITEND
c with a large enough value for NTOT2 (it is defined below) that
c the segmentation does not occur anywhere near the pulse. Plot
c the results in short segments to see how large the filter
c transients are at various intervals from the original pulse.
c The SPIKE8.BBF file can be used as the input file; the TSPLOT
c program can be used to plot the results.
c
c
c Instrument correction
c =====================
c The damped harmonic oscillator equation is used for instrument
c correction. The instrument correcting equation in the time domain,
c t, is:
c
c a(t) = x(t) + x'(t)*c + x''(t)*d [A]
c
c where a(t) = corrected acceleration sampled at equal intervals
c (=DPDELT seconds) in time.
c = the time series returned in WORK() from FDIC;
c x(t) = instrument response scaled to approximate ground
c acceleration.
c = instrument response multiplied by a scale factor
c proportional to (-u*u).
c = the time series given in WORK() on entry to FDIC;
c x'(t) = first derivative of x(t);
c x''(t)= second derivative of x(t);
c c = 2*DINS/u
c d = 1.0/(u*u)
c u = natural frequency of the recording instrument in
c radians/sec
c = 2*PI/PINS
c PI = 3.14159
c PINS = instrument period, in seconds;
c DINS = instrument damping as a fraction of critical damping;
c and upper case words (like PI, PINS and DINS) are constant,
c variable, or argument names used in the code.
c
c The equivalent instrument-correcting equation in the frequency
c domain, f, is:
c
c b(f) = z(f) * (g + hi) [B]
c
c where z(f) = x(t) transformed via an FFT to an evenly-sampled
c series in the frequency domain. z(f) is a series
c of complex numbers, unlike x(t) which is a series
c of real numbers.
c b(f) = a(t) in the frequency domain. Like z(f), it is a
c series of complex numbers.
c (g + hi)= is a complex number having g as its real component, h

 page H-24 BAP
 Fortran Code 01mar92

Version 1.0

c as its imaginary component, and:
c g = 1.0 - (f*f * PINS*PINS) = FR
c h = 2.0*f*DINS*PINS = FI
c
cc
c The frequency-domain instrument correcting equation, [B], can be
c derived from the time-domain equation, [A], as follows.
c
c Substitute c = 2*DINS*PINS/(2*PI)
c and d = PINS*PINS/(2*PI*2*PI)
c into [A]:
c
c a(t) = x(t) + x' (t)*2*DINS*PINS/(2*PI)
c + x''(t)*PINS*PINS/(2*PI*2*PI) [C]
c
c Transform [C] to the frequency domain:
c
c b(f) = z(f) + z' (f)*2*DINS*PINS/(2*PI)
c + z''(f)*PINS*PINS/(2*PI*2*PI) [D]
c
c By Euler's equation, z' (w) = i*w *z(w)
c and z''(w) = -w*w *z(w)
c where w = frequency in radians/sec
c and i = sqrt(-1).
c Convert from frequency in radians/sec, w, to frequency in Hz., f,
c with w = f*2*PI:
c z' (f) = i*f *2*PI *z(f)
c z''(f) = -f*f*2*PI*2*PI *z(f)
c
c Substitute these derivatives into [D] and the 2*PI factors cancel
c one another:
c b(f) = z(f) + [i*f *z(f)]*2*DINS*PINS
c + [-f*f *z(f)]*PINS*PINS [E]
c
c Rearrange terms:
c b(f) = z(f) + z(f) * (i*f*2*DINS*PINS)
c + z(f) * (-f*f*PINS*PINS)
c b(f) = z(f) * (1.0 -f*f*PINS*PINS + i*f*2*DINS*PINS)
c
c Substitute g = 1.0 - (f*f * PINS*PINS)
c and h = 2.0*f*DINS*PINS
c to arrive at the instrument correcting equation [B]:
c
c b(f) = z(f) * (g + hi) [B]
c
c
c High-cut Filter
c ===============
c The high-cut filter is applied by setting samples in the
c frequency domain to 0.0 above f = FH2 and weighting samples between
c f = HITBEG and f = HITEND with a cosine taper.
c
c
c Segmentation
c ============
c The FFT used (subroutine REALFT, called from ccFFT) requires
c an input time series that has an integral power of 2 as the number
c of samples. That can mean that the WORK() array would need to be
c unnecessarily large: for instance, if the time series is 8193
c (=1+ 2**13) samples long, we'd need a working array that was 16384
c (=2**14) words long. For this reason, FDIC passes just 1024 samples
c to the FFT in each of several separate calls to ccFFT.
c
c FDIC uses the "overlap-add method" for fitting separately
c filtered segments of the time series back together. See section
c 3.8, pages 110 to 113 in "Digital Signal Processing" by A.V.
c Oppenheim and R.W. Schafer; Prentice-Hall, 1975.
c
c Illustration of "overlap-add" method:
c
c 1) Divide WORK() into equal-lengthed segments:
c
c last seg>< current segment >< next segment
c WORK(): ...------=======================---------------...
c length: < nwseg >< nzeros >
c " <nlap><nlap>< nwseg-nlap ><nlap><nlap><2>
c area name: < A >< B >< C >< D >< E >
c
c 2) Before transforming each segment to the frequency domain, copy
c values from WORK() in the NZEROS area to WSAVE(), then set that
c area of WORK(), which is the beginning of the next segment to be

 BAP page H-25
 01mar92 Fortran Code

Version 1.0

c processed, to 0.0.
c
c 3) Transform the B+C+D+E area of WORK() to frequency domain,
c instrument correct and filter, then transform back to the time
c domain. The resulting sequence represents one cycle of a
c periodic sequence and is longer than the original NWSEG points,
c extending into the NZEROS area of WORK() from both directions.
c
c 4) Add results in overlapping areas after transforming back to
c the time domain.
c A=A+E B=B+ENDLAP C=C D is saved in ENDLAP()
c =B+ last D to be added into the B
c area of the next seg.
c
c 5) Copy contents of WSAVE() back into the NZEROS area of WORK(),
c then repeat 2) through 5) for the next segment.
cc
c Sizes used in the overlap method are defined here although NTOT2
c and NLAP may become input arguments someday.
c NWSEG =number of WORK()-values in each segment
c NZEROS =number of trailing zeros appended to the original
c segment values before filtering
c NLAP =length of overlap extending on each side of the NWSEG
c values after filtering.
c NZEROS includes space for 2*NLAP (unlike the 1*NLAP used
c in the example in the textbook cited) because the
c instrument response function has non-zero values on
c both sides of zero.
c NTOT2 =number of real, time-domain, values that are processed
c by each application of the FFT (subroutine ccFFT/REALFT,
c RFFT or VFORK).
c NF+1 =number of complex, frequency-domain, values returned
c from the FFT. The first is for zero-frequency.
cc
cwas1: parameter (m=9)
cwas2: parameter (m=10)
 parameter (m=11)
 parameter (nf=2**m)
 parameter (ntot2=2*nf)
cwas1: parameter (nlap=128)
cwas2: parameter (nlap=256)
 parameter (nlap=512)
 parameter (n2lap=nlap*2)
 parameter (nwseg =ntot2-n2lap)
cc
 logical first,last
 parameter (pi=3.1415926)
 parameter (kfft = 3)
cc
c Save info. between calls --
cc
 common /svfdic/ init,last,delf,fh1,fh2,nh1,nh2,nzeros,
 x wsave(n2lap+2),endlap(nlap)
c ### save svfdic
cc
 if (ndata.gt.lenwrk) call woe(0)
 if (ndone.gt.lenwrk) call woe(0)
 if (ndone.gt.ndata) call woe(0)
 if (ndata.lt.lenwrk) then
 do 301 i=ndata+1,lenwrk
 work(i)=0.0
 301 continue
 endif
cc
c Report to user
cc
 if (ndone.lt.0) then
 fh1 = hitbeg
 fh2 = hitend
 if (minsc) then
 write (lunmsg, 1004) pins, dins, hitbeg, hitend
 else
 write (lunmsg, 1005) hitbeg, hitend
 endif
 if (lunmsg.ne.lunusr) then
 if (minsc) then
 write (lunusr, 1004) pins, dins, hitbeg, hitend
 else
 write (lunusr, 1005) hitbeg, hitend
 endif
 endif

 page H-26 BAP
 Fortran Code 01mar92

Version 1.0

cc
c Warn user if things don't look right
cc
 if (fh2 .gt. 1.00001/(dble(2)*dpdelt)) then
 write (lunmsg, 1001) fh2, 1.0/dpdelt
 if (lunmsg.ne.lunusr)
 x write (lunusr, 1001) fh2, 1.0/dpdelt
 call warn ('*',lunusr,lunmsg)
 endif
cwas: if (fh1 .gt. 0.50001*fh2)
 if (fh1+1.999 .gt.fh2) then
 write (lunmsg,1002) fh1, fh2
 if (lunmsg.ne.lunusr) write (lunusr,1002) fh1, fh2
 call warn ('*',lunusr,lunmsg)
 endif
 if (pins .gt. 1.0) then
 write (lunmsg,1003) pins
 if (lunmsg.ne.lunusr) write (lunusr,1003) pins
 call warn ('*',lunusr,lunmsg)
 endif
 if (minsc) then
 if (pins.le. 0.0) call woe(0)
 if (dins.le. 0.0) call woe(0)
 if (dins.ge. 1.0) call woe(0)
 endif
cc
c Preliminaries for the first call to FDIC:
c DELF = sampling interval in the frequency domain.
c NH1+1= complex sample # in FD at which the cosine taper starts.
c NH2+1= " ends.
c FH1 = frequency at which the cosine taper starts.
c FH2 = " ends.
c FH1 usually = HITBEG and FH2 usually = HITEND, but they
c may be reset if the input values for HITBEG and HITEND
c are unreasonable.
cc
 nzeros=n2lap
 if (kfft.ne.3) nzeros = nzeros+2
 ndone=0
 first=.true.
 last=.false.
 next0=0
 init=-1234
 do 302 i=1,nzeros
 wsave(i)=work(i)
 302 continue
 do 303 i=1,nlap
 endlap(i)=0.0
 303 continue
cc
 t = real(dble(ntot2)*dpdelt)
 delf = 1.0/t
 if (fh2.le.0.0) fh2 = dble(0.5)*dpdelt
 nh1 = int(fh1*t)
 nh2 = int(fh2*t)
cc
c Reset FH1,NH1, FH2,NH2 if input values are unreasonable.
cc
 if (nh2.eq.nf) nh2 = nf -1
 if (fh2.le.0.0 .or. nh2.ge.nf) then
 nh2 = nf -1
 fh2 = nh2*delf
 endif
 if (fh1.le.0.0 .or. nh1.ge.nh2) then
 nh1 = nh2
 fh1 = nh1*delf
 endif
 if (fh1.ne. hitbeg .or. fh2.ne. hitend) then
 write (lunmsg, 1006) fh1, fh2
 if (lunmsg.ne.lunusr)
 x write (lunusr, 1006) fh1, fh2
 call warn ('*',lunusr,lunmsg)
 endif
cc
c Preliminaries for calls other than the first:
cc
 else
 if(init.ne.-1234) call woe(0)
 if(last) call woe(0)
 first = .false.
 next0 = ndone+nlap

 BAP page H-27
 01mar92 Fortran Code

Version 1.0

 if(ndata.le.next0) then
 ndone = ndata
 return
 endif
 endif
cc
c Determine NSEGS, the number of segments that will be processed
c during this call to FDIC.
cc
 nsegs = (ndata-next0) /nwseg
 nn = 1+(ndata-next0-1)/nwseg
 nnmax = (lenwrk-next0)/nwseg
 if (nnmax .le. 0) call woe(0)
 if (nn.le.nsegs .or. nsegs .le.0 .or.
 x (nn.eq.nsegs+1 .and. nn.le.nnmax)) then
 nsegs = nn
 last = .true.
 endif
 nn= next0 + nsegs*nwseg + nzeros
 if(nn.gt.lenwrk) call woe(0)
cc
c Loop for each segment of WORK, WORK(NOW0+1) through WORK(NEXT0)
cc
 do 102 iseg=1,nsegs
 now0 = next0
 next0 = next0+nwseg
cc
c a) Save the area of WORK() in the next segment that needs to be
c zeroed out for the overlap method. Also replace the saved
c WORK() area from the last segment.
cc
 do 103 i=1,nzeros
 work(now0+i) =wsave(i)
 wsave(i) =work(next0+i)
 work(next0+i)=0.0
 103 continue
cc
c b) Transform current segment of WORK(), along with its trailing
c zeros, from time-domain to frequency-domain.
c NF+1 frequency-domain samples are returned from the FFT. Odd
c locations in the returned WORK() are real, even locations are
c imaginary, for all but the first and last frequency-domain
c samples. Since the first and last samples both have 0.0 as
c their imaginary component, the real component for the first
c sample is returned in WORK(1) and the real component for the
c last sample is returned in WORK(2).
c Note that it is only subroutine REALFT (called from ccFFT) that
c packs the first and last sample together this way. Other FFT
c subroutines formerly used here (VFORK and RFFT) required the
c data array to be 2 words longer than required for the time
c series. Those extra 2 words can cause memory limitation
c problems, for they extend beyond a 2**n boundary, so we are
c using REALFT/ccFFT here rather than VFORK or RFFT.
c
c +++ Comments at the end of this file illustrate how to change this
c code to use other FFT subroutines. +++
cc
 call ccFFT (work(now0+1), nf, +1)
 rlast = work(now0+2)
 work(now0+2) = 0.0
 if (nh2 .ge. nf) call woe(0)
 maxb = ntot2
cc
c c) Instrument correct.
cc
 if (minsc) then
 do 14 i=1,nh2
 j=2*i+1
 f=delf*real(i)
 fr=1.0-f*f*pins*pins
 fi=2.0 *f*dins*pins
 TEMP1=FR*work(now0+J) -FI*work(now0+J+1)
 TEMP2=FR*work(now0+J+1)+FI*work(now0+J)
 work(now0+J) =TEMP1
 work(now0+J+1)=TEMP2
 14 continue
 endif
cc
c d) Apply cosine taper from frequency = FH1 to FH2.
cc
 if (nh1.lt.nh2) then

 page H-28 BAP
 Fortran Code 01mar92

Version 1.0

 do 15 i=nh1+1,nh2
 j=2*i+1
 f=delf*real(i)
 factor=0.5*(1.0+cos(pi*(f-fh1)/(fh2-fh1)))
 work(now0+J) =factor*work(now0+J)
 work(now0+J+1)=factor*work(now0+J+1)
 15 continue
 endif
cc
c e) Set filter response =0.0 for frequencies above FH2.
cc
 rlast =0.0
 nn=1+2*(nh2+1)
 if (nn.le.maxb) then
 do 16 i=nn,maxb
 work(now0+i)=0.0
 16 continue
 endif
cc
c f) Transform back to time.
cc
 work(now0+2)=rlast
 call ccFFT (work(now0+1), nf, -1)
 factor=2.0/real(ntot2)
 do 6 i=now0+1, now0+maxb
 work(i)=work(i)*factor
 6 continue
cc
c g) Overlap these results with results from the last segment.
cc
 do 304 i=1,nlap
 ii=now0+i
 work(ii)=work(ii) + endlap(i)
 endlap(i)=work(next0+i)
 304 continue
 if(.not. first) then
 nn=now0 -nlap
 mm=next0+nlap
 do 305 i=1,nlap
 ii=nn+i
 work(ii)=work(ii)+work(mm+i)
 305 continue
 endif
 first = .false.
cc
c End of segment loop.
cc
 102 continue
 ndone =next0-nlap
cc
c If the last segment processed is the last in the time series,
c set WORK() to zero beyond NDATA and set NDONE=NDATA.
cc
 if(last) then
 if(next0.lt.ndata) call woe(0)
 ndone=ndata
 do 310 i=ndata+1,lenwrk
 work(i)=0.0
 310 continue
 endif
 return
cc
 1001 format(/3x
 x, ' *** WARNING: the hi-cut filter stop band begins at'
 x, g13.5, ' Hz.'
 x/8x,'and the sampling rate =', g13.5
 x, ' samples per second. The'
 x/8x,'stop band should begin at a frequency less than or equal'
 x/8x,'to half the sampling rate. ***' /)
 1002 format (/3x
 x, ' *** WARNING: the transition band for the hi-cut filter is'
 x/8x,'at', g13.5, ' to', g13.5, 'Hz. The filter may not be'
 x/8x,'accurate with such a narrow transition. HITEND should be'
 x/8x,'greater than or equal to HITBEG+2, and HITEND=2*HITBEG is'
 x/8x,'preferred. See the "warning" section in the FORTRAN'
 x/8x,'comments in FDIC.FOR. ***' /)
 1003 format (/3x
 x, ' *** WARNING: recording instrument period =', g13.5, '.'
 x/8x,'The instrument correction algorithm may not be accurate if'
 x/8x,'the period is greater than 1.0. See the "warning" section'
 x/8x,'in the FORTRAN comments in FDIC.FOR. ***' /)

 BAP page H-29
 01mar92 Fortran Code

Version 1.0

cc
 1004 format (8x,'Instrument period =', f7.3,' seconds,'
 x/8x,'Instrument damping fraction =', f7.3,' of critical damping,'
 x/8x,'Filter transition band =', f6.1,' to', f6.1,' Hz.')
 1005 format (8x,
 x 'Filter transition band =', f6.1,' to', f6.1,' Hz.')
 1006 format (3x, ' *** ',
 x 'Filter transition band reset to', f6.1,' to', f6.1,' Hz.')
cccccccccccccccccccc (end of FDIC) ccccccccccccccccccccccccccccccccc
 end
c ==
c +++ To modify FDIC to use a different FFT subroutine (FORK or RFFT),
c reset the KFFT parameter and replace paragraphs b) and f) with
c the following: +++
c ==
c cc
c c b) Transform current segment of WORK(), along with its trailing
c c zeros, from time-domain to frequency-domain.
c cc
c if (kfft.eq.1) then
c call VFORK(work(now0+1), M)
c maxb = ntot2+2
c else if (kfft.eq.2) then
c call RFFT (work(now0+1), ntot2)
c maxb = ntot2+2
c else
c call ccFFT (work(now0+1), nf, +1)
c rlast = work(now0+2)
c work(now0+2) = 0.0
c if (nh2 .ge. nf) call woe(0)
c maxb = ntot2
c endif
c cc
c c f) Transform back to time.
c cc
c if (kfft.eq.1) then
c call UFORK(work(now0+1), M)
c factor= 1.0
c else if (kfft.eq.2) then
c call RFFTI(work(now0+1), ntot2)
c factor=2.0/real(ntot2)
c else
c work(now0+2)=rlast
c call ccFFT (work(now0+1), nf, -1)
c factor=2.0/real(ntot2)
c endif
c do 6 i=now0+1, now0+maxb
c work(i)=work(i)*factor
c 6 continue
cc

 page H-30 BAP
 Fortran Code 01mar92

Version 1.0

H.6 BIHIP.FOR

 Subroutine BIHIP applies a high-pass (= low-cut) bidirectional Butterworth
filter to the time series.

 subroutine BIhip(array,ndata,fcut,dt,nfs)
 dimension array(ndata)
 double precision dt,fcut
cc
c BIhip: Bidirectional, high-pass Butterworth recursive filter.
c
c On entry --
c ARRAY() contains the time series to be filtered.
c NDATA = number of samples in the time-series, array(1)
c through array(NDATA).
c FCUT = corner frequency in cps.
c This "corner" is the frequency at which the filter
c gain is down by 6 decibels.
c (double precision.)
c DT = time increment between data points, seconds.
c (double precision.)
c NFS = rolloff parameter.
c rolloff = nfs*24 decibels/octave.
c
c On return --
c ARRAY() contains filtered time-series.
c
cc
c Subroutine History:
c ==================
c Written by Keith McCamy of Lamont-Doherty Geological Observatory
c of Columbia University.
c
c Installed as subroutine BUTWOR on the USGS BES&G PDP/11-70 user
c library by Jon Fletcher.
c
c Modified by Mike Raugh in 1981:
c - working variables are in double precision and are dimensioned
c as (11) rather than (8).
c - uses data in a virtual array
c - wrote messages to lun=5. (which April later removed.)
c
c Modified by April Converse in 1982:
c - April's changes are in lower case; earlier code is in upper
c case.
c - renamed it to BIhip so it can be distinguished from the BUTWOR
c subroutine on USERLIB.
c - made DT double precision since it is so in the calling
c subroutine.
c - renamed S() to ARRAY() and ISIZ to LARRAY so ARRAY() can be
c declared as a standard or a virtual array, depending on the
c contents of array.inc.
c
c Modified by April Converse in 1987:
c - removed the virtual version of ARRAY()
c - removed array.inc and LARRAY.
c
cc
c
c Comments before April's changes:
c ================================
c
c was: SUBROUTINE BUTWOR (S, NDATA, FCUT, TS, NFS)
c was:C+
c was:c BUTWOR is a high pass
Butterworth filter. It does
c was:c not shift frequency in the time domain (phase = 0).
c was:c
c was:c Call BUTWOR (s, ndata, fcut, ts, nfs)
c was:c
c was:c s = the array of data to be filtered
c was:c ndata = the number of data points
c was:c fcut = the corner frequency
c was:c ts = the time interval (dt)
c was:c nfs = the order of the rolloff
c was:c

 BAP page H-31
 01mar92 Fortran Code

Version 1.0

c was:c-
c was:c
c was: DIMENSION S(NDATA), F(8, 3), A(8), B(8), C(8)
cc
 Double Precision CS, PI, TEMP, TS, WCP
 Double Precision F(11,3),A(11),B(11),C(11)

 NFS1=NFS+1
 if(nfs1.gt.11) call woe(0)
 ts=dt
 PI=3.1415926535
 WCP=SIN(FCUT*PI*TS)/COS(FCUT*PI*TS)
 DO 5 K=1,NFS
 CS=COS(FLOAT(2*(K+NFS)-1)*PI/FLOAT(4*NFS))
 A(K)=1./(1.+WCP*WCP-2.*WCP*CS)
 B(K)=2.*(WCP*WCP-1.)*A(K)
 5 C(K)=(1.+WCP*WCP+2.*WCP*CS)*A(K)
C...PERFORM CONVOLUTION IN TWO DIRECTIONS
 DO 30 IJK=1,2
 DO 6 I=1,NFS1
 DO 6 J=1,2
 6 F(I,J)=0.
 DO 10 N=1,NDATA
 F(1,3)=array(N)
 DO 14 I=1,NFS
 TEMP=A(I)*(F(I,3)-2.*F(I,2)+F(I,1))
 14 F(I+1,3)=TEMP-B(I)*F(I+1,2)-C(I)*F(I+1,1)
 DO 16 I=1,NFS1
 DO 16 J=1,2
 16 F(I,J)=F(I,J+1)
 10 array(N)=F(NFS1,3)
 NBY2=INT(FLOAT(NDATA)/2.)
 DO 20 N=1,NBY2
 NUM=NDATA-N+1
 TEMP=array(N)
 array(N)=array(NUM)
 20 array(NUM)=TEMP
 30 CONTINUE
 Return
cccccccccccccccccccc (end of BIHIP) ccccccccccccccccccccccccccccccccccc
 End

 page H-32 BAP
 Fortran Code 01mar92

Version 1.0

H.7 BAPFAS.FOR

 Subroutine BAPFAS calculates the Fourier amplitude spectrum of the
acceleration time series.

 subroutine BAPFAS(lunusr,lunmsg, lunfas,
 x nsmoo, motion, dpdelt, work,lenwrk,npoint,
 x nf, deltaf)
 double precision dpdelt
 real work(lenwrk)
cc
c BAPFAS: Fourier amplitude spectrum calculating subroutine for
c program = BAP.
c
c On entry --
c LUNMSG = LUN to receive run messages and diagnostics.
c = user's terminal or disk file.
c LUNUSR = " = user's terminal.
c LUNFAS = LUN to receive Fourier amplitude spectra printout, or
c = 0 if no FAS file is required.
c NSMOO =<2 => No smoothing of the squared amplitudes is required.
c > 2 => Smooth the squared amplitudes with an NSMOO-point,
c weighted running mean. NSMOO should be an odd
c number.
c MOTION indicates the kind of data in the WORK() array:
c 1=> cm/sec/sec,
c 2=> cm/sec,
c 3=> cm,
c 4=>unknown.
c negative => uncorrected
c DPDELT = sampling interval, in seconds. (usually = 0.005)
c >>> Note that this is in double precision.
c WORK() = A large array for workspace that contains the
c time series on entry to this subroutine, but
c will contain the frequency-domain fourier amplitude
c series on return.
c LENWRK = length of WORK(). The excess space in WORK(),
c between WORK(NPOINT+1) and WORK(LENWRK), is
c used as work space when applying the smoothing
c option.
c NPOINT = Number of time-series samples in WORK().
c
cc
c On exit --
c WORK(1 to NF) = the Fourier amplitude values
c WORK(NF+1 to LENWRK) = garbage
c NF = Number of frequency-domain samples in WORK()
c DELTAF = sampling interval, in Hz.
c NSMOO may have been reset to 1 if an outrageously large
c value were given on input.
cc
 include 'bapconst.inc'
 include 'bapunits.inc'
 include 'tempcs.inc'
cc
c Extend the time series with trailing zeros so the number of
c time-series samples, NTIME, will be an integral power of 2.
cc
 nn=npwr2(npoint)
 if (nn.gt.lenwrk) then
 nn = nn/2
c +++ might be better to loose some of the leading pad here? +++
 write(lunmsg,1006) npoint, nn, lenwrk, nn*2
 if (lunmsg.ne.lunusr) write(lunusr,1006)
 x npoint, nn, lenwrk, nn*2
 if (nn.gt.npoint) call woe(0)
 call warn ('*',lunusr,lunmsg)
 else if (nn.gt.npoint) then
 write (lunmsg, 1007) nn-npoint, nn
 if (lunmsg.ne.lunusr) write (lunusr,1007) nn-npoint, nn
 do 10 i = npoint+1,nn
 work(i)= 0.0
c +++ Want to add the zcross business here?
 10 continue
 endif

 BAP page H-33
 01mar92 Fortran Code

Version 1.0

 ntime=nn
cc
c Transform the padded time series to a frequency series.
c NF+1 frequency-domain samples are returned from the FFT. Odd
c locations in the returned WORK() are real, even locations are
c imaginary, for all but the first and last frequency-domain
c samples. Since the first and last samples both have 0.0 as
c their imaginary component, the real component for the first
c sample is returned in WORK(1) and the real component for the
c last sample is returned in WORK(2).
c All the frequency-domain samples returned from ccFFT need to be
c normalized by multiplying by DPDELT.
cc
 nf= nn/2
 call ccFFT (work, nf, +1)
 rlast = work(2)
 work(2) = 0.0
 deltaf= real (dble(1.0)/(dpdelt*dble(nn)))
 write(lunmsg,1005) nn, nf+1
 if (lunmsg.ne.lunusr) write(lunusr,1005) nn, nf+1
cc
c Calculate amplitude**2 from each real/imaginary pair.
cc
 jreal= -1
 jimag= 0
 dtsqr= real(dpdelt*dpdelt)
 do 21 i=1,nf
 jreal=jreal+2
 jimag=jimag+2
 work(i)= dtsqr * (work(jreal)*work(jreal) +
 x work(jimag)*work(jimag))
 21 continue
 nf = nf+1
 work(nf) = dtsqr*rlast*rlast
cc
c If requested, smooth the squared amplitudes with a weighted
c running mean.
cc
 nsmoo2 =1
 if(nsmoo.gt.2) then
 write(lunmsg,1002) sqrt(work(1))
 if (lunmsg.ne.lunusr) write(lunusr,1002) sqrt(work(1))
cc
 mxw = (lenwrk-nf)/3
 locwts = nf+1
 loca = locwts + mxw
 locb = loca + mxw
 nw=(nsmoo+1)/2
 nsmoo2 = 1+ 2*(nw-1)
 if(nw .gt.mxw) then
 n = nw*2 + lenwrk
 write(lunmsg,1004) nsmoo2,nsmoo2, n, lenwrk
 if (lunmsg.ne.lunusr) write(lunusr,1004)
 x nsmoo2,nsmoo2, n, lenwrk
 call warn ('*',lunusr,lunmsg)
 nsmoo = 1
 else
 call FASSMO(nw, nf,
 x work(1), work(locwts), work(loca),work(locb))
cc
 write(lunmsg,1003) nsmoo2,sqrt(work(1))
 if (lunmsg.ne.lunusr)
 x write(lunusr,1003) nsmoo2,sqrt(work(1))
 endif
 endif
cc
c Amplitude = sqrt(amplitude**2)
cc
 if (lunfas.gt.0) then
 write (lunfas, 2001) ntime, nf
 write (lunfas, 2002) dpdelt, deltaf
 if (nsmoo2 .le.1) then
 write (lunfas, 2005)
 else
 write (lunfas, 2006) nsmoo2
 endif
 write (lunfas, 2003) real(nf-1)*deltaf
 endif
 iprint = 1
 vmin = huge
 vmax = -huge

 page H-34 BAP
 Fortran Code 01mar92

Version 1.0

 imin = 0
 imax = 0
 do 30 i=1,nf
 work(i)=sqrt(work(i))
 if (work(i).gt.vmax) then
 vmax = work(i)
 imax = i
 endif
 if (work(i).lt.vmin) then
 vmin = work(i)
 imin = i
 endif
 if (lunfas.gt.0 .and. (0 .eq. mod(i,5) .or. i.eq.nf)) then
 write (lunfas, 2004) iprint, (work(j), j = iprint, i)
 iprint = i + 1
 endif
 30 continue
cc
c Report to user
cc
 tempcs = ' '
 n = abs(motion) +1
 if (n.gt.4 .or. n.lt.0) n=4
 j = 1 + (10 -lnbc(csunit(n)))/2
 tempcs(j:) = csunit(n)
 n = 10
 write (lunmsg,1020) tempcs(1:n)
 write (lunmsg,1021) vmax, deltaf*real(imax-1), imax
 write (lunmsg,1022) vmin, deltaf*real(imin-1), imin
 write (lunmsg,1023) work(1), 0.0, 1
 write (lunmsg,1024) work(nf), deltaf*real(nf-1), nf
 write (lunmsg,1025) deltaf
 if (lunusr.ne.lunmsg) then
 write (lunusr,1020) tempcs(1:n)
 write (lunusr,1021) vmax, deltaf*real(imax-1), imax
 write (lunusr,1022) vmin, deltaf*real(imin-1), imin
 write (lunusr,1023) work(1), 0.0, 1
 write (lunusr,1024) work(nf), deltaf*real(nf-1), nf
 write (lunusr,1025) deltaf
 endif
cc
 return
cc
 1002 format(8x,'Amplitude at zero frequency =', 1pe12.5)
 1003 format(8x,'Amplitude at zero frequency after smoothing the',
 x ' squared amplitues'
 x/11x, 'with a',i6,'-point weighted running mean =', 1pe12.5)
 1004 format (/' *** '
 x,'Sorry! Smoothing the squared Fourier amplitudes with a'
 x/8x,i6,'-point running mean was requested, but there is not'
 x/8x,'enough space in the WORK array to handle',i6,' weights.'
 x/8x,'Would need', i11, ' words, only have',i11,'.'
 x/8x,'Consequently, NO smoothing will be done. ***' //)
 1005 format(8x, 'The',i7,
 x' time-series samples have been transformed to',i6
 x/11x,'complex samples in the frequency domain.')
 1006 format (/3x, '*** WARNING: '
 x,'the temporary copy of the time series used to calculate'
 x/8x,'the Fourier amplitude spectrum has been truncated from',i8,
 x/8x,'samples to', i8, ' samples to arrange that the number of'
 x, ' samples'
 x/8x,'in the time series is an integral power of 2, as is'
 x, ' required by'
 x/8x,'the FFT used in these calculations. The working array'
 x/8x,'(', i8,' words long now) is not long enough to contain'
 x/8x,'the', i8, ' samples that would be required without'
 x/8x,'truncation. ***' /)
 1007 format (8x,
 x 'The time series has been extended with', i7, ' trailing'
 x/11x,'zeros so the total number of samples is an integral'
 x, ' power'
 x/11x,'of 2 (=', i7,') as is requried for the FFT used in the'
 x/11x,'Fourier amplitude spectrum calculations.')
cc
 1020 format (8x, 19x,' ',a, ' Hz. sample #'
 x/ 8x, 19x,' ---------- ------- --------')
 1021 format (8x,'Maximum amplitude =', 1p2g14.5, i10)
 1022 format (8x,'Minimum amplitude =', 1p2g14.5, i10)
 1023 format (8x,'First sample = ', 1p2g14.5, i10)
 1024 format (8x,'Last sample = ', 1p2g14.5, i10)
 1025 format (8x,'Sampling interval =', 14x, 1pg14.5)

 BAP page H-35
 01mar92 Fortran Code

Version 1.0

cc
 2001 format (/
 x 1x,i6,' = N, = number of zero-padded time-domain samples,',
 x/1x,6x,' where 2**M = N.'
 x/1x,i6,' = 1 + N/2, = number of frequency-domain samples.')
 2002 format (3x,'Delta-time =', 1pe13.5,
 x /3x,'Delta-frequency =', 1pe13.5
 x, ' = 1.0/(delta-time*N)')
 2003 format (/1x, 'Fourier amplitudes at frequencies = 0.0 to',
 x 1pg13.5,' Hz.:'
 x /' sample'
 x /' number Fourier amplitudes'
 x /' ====== ==================')
 2004 format (1x,i6,3x, 5(1pe12.4))
 2005 format (3x,'No smoothing applied.')
 2006 format (3x,
 x'Squared amplitudes have been smoothed with a',i6,'-point'
 x/21x, 'weighted running mean.')
cccccccccccccccccccc (end of BAPFAS) ccccccccccccccccccccccccccccccccccc
 end
 subroutine fassmo (nw, nf, array, weight, asave, bsave)
 real array(nf), weight(nw), asave(nw), bsave(nw)
cc
c FASSMO is called from BAPFAS to smooth the squared amplitudes in
c ARRAY() with a weighted running mean. The weighting function
c has the shape of an isosceles triangle and is applied with its
c apex at the point to be reevaluated. The end points of the
c series are smoothed as though the series wrapped around on
c itself, beginning to end.
cc
c Calculate the weights:
cc
 k=0
 j= nf-nw
 do 10 i=1,nw
 weight(i)=real(i)
 k=k+i
 asave(i)=array(i+j)
 bsave(i)=array(i)
 10 continue
 temp=1.0/real(k+k-nw)
 do 11 i=1,nw
 weight(i)=weight(i)*temp
 11 continue
cc
c Apply the weights:
cc
 nwm1=nw-1
 do 20 i=1,nf
 do 21 j=1,nwm1
 asave(j)=asave(j+1)
 21 continue
 asave(nw)=array(i)
 array(i)=weight(nw)*array(i)
 k= i + nw
 do 22 j=1,nwm1
 jj=k-j
 if(jj.le.nf) then
 temp=array(jj)
 else
 temp= bsave(jj-nf)
 endif
 array(i)=array(i) + weight(j)*(temp+asave(j))
 22 continue
 20 continue
 return
cccccccccccccccccccc (end of FASSMO/BAPFAS) ccccccccccccccccccccccccccc
 end

 page H-36 BAP
 Fortran Code 01mar92

Version 1.0

H.8 BAPRSC.FOR

 Subroutine BAPRSC calculates response spectra by calling subroutine
CMPMAX.

 subroutine BAPRSC(lunusr,lunmsg,lunres,spdelt,ts,npoint,
 x damp, ndamp, period, nper,rv,prv)
 real spdelt
 real ts(npoint), damp(ndamp), period(nper)
 real rv(nper,ndamp), prv(nper,ndamp)
cc
c BAPRSC = response-spectra calculating subroutine for program = BAP.
c BAPRSI should have been called to fill in the DAMP() and
c PERIOD() arrays before BAPRSC is called.
c
c On entry --
c LUNMSG = lun for run messages and diagnostics
c LUNUSR = another "
c LUNRES = lun for printing response-spectra values, or
c = 0 if no response-spectra output file is needed.
c SPDELT = time increment between samples in the time series, TS.
c >>> Note that SPDELT is in single precsion, unlike
c the double precision DPDELT that is used
c elsewhere in BAP.
c TS() = an acceleration time series.
c NPOINT = number of samples in TS().
c DAMP() = list of damping values for which response spectra
c should be calculated. Damping value units =
c fraction of critical damping.
c NDAMP = number of values in DAMP()
c PERIOD() = list of period values at which the response should
c be calculated to represent the spectrum. Period
c value units = seconds.
c NPER = number of values in PERIOD()
c
c On return --
c RV (-,k) = relative velocity response spectrum
c for damping = damp(k)
c PRV(-,k) = pseudo-velocity response spectrum
c for damping = damp(k)
cc
 character*1 onec
cc
 toolow = 10.0*spdelt
 if (lunres.gt.0) then
 write (lunres,2001)
 if (period(1).lt.toolow) write (lunres,2002)
 write (lunres,2003)
 endif
cc
c Outer loop calculates response spectrum (RV and PRV) curves for each
c damping value --
cc
 kug = npoint-1
 if (kug.le.0) call woe(0)
 do 600 kurve =1,ndamp
 dampk = damp(kurve)
 if (kurve.eq.1) then
 write(lunmsg,1003) dampk
 if (lunusr.ne.lunmsg) write(lunusr,1003) dampk
 else
 write(lunmsg,1004) dampk
 if (lunusr.ne.lunmsg) write(lunusr,1004) dampk
 if (lunres.gt.0) write (lunres,'(1h)')
 endif
 yy = sqrt(1.0-dampk*dampk)
cc
c Inner loop calculates max. response wrt period
cc
 do 500 loop = 1,nper
 w = 6.2831853/period(loop)
 wd = yy*w
 w2 = w*w
 w3 = w2*w

 BAP page H-37
 01mar92 Fortran Code

Version 1.0

 call CMPMAX (kug,ts,period(loop),
 x w,w2,w3,wd,dampk,spdelt,RD,ZV,AA)
 rv (loop,kurve) = ZV
 prv(loop,kurve) = w*RD
 if (lunres.ne.0) then
 paa = w2*RD
 if (period(loop) .lt. toolow) then
 onec = '*'
 else
 onec = ' '
 endif
 write (lunres,2000) loop,onec,period(loop), dampk,
 x RD,rv(loop,kurve),prv(loop,kurve),AA,paa
 endif
 500 continue
 600 continue
 return
cc
 1003 format (8x, 'Damping =', f9.3)
 1004 format (8x, ' ', f9.3)
cc
cwas: 2000 format (i4, f8.3, f7.3, f11.5, 4f12.5)
 2000 format (i4,a1, f8.3, f7.3, 1p5e11.3)
 2001 format (/3x, '# = sample # in the spectrum')
 2002 format (3x,
 x '* ==> period too low for reliable reponse values')
 2003 format (
 x 3x,'PER = natural vibration period, in seconds'
 x/3x,'DAMP= damping ratio, as a fraction of critical damping'
 x/3x,'RD = relative displacement, in cm.'
 x/3x,'RV = relative velocity, in cm/sec.'
 x/3x,'PV = pseudo-velocity, in cm/sec.'
 x/3x,'AA = absolute acceleration, in cm/sec/sec.'
 x/3x,'PAA = pseudo-acceleration, in cm/sec/sec.'
 x//' # PER DAMP RD RV PV'
 x,' AA PAA')
cccccccccccccccccccc (end of BAPRSC) cccccccccccccccccccccccccccccc
 end

 page H-38 BAP
 Fortran Code 01mar92

Version 1.0

H.9 CMPMAX.FOR

 Subroutine CMPMAX calculates maximum absolute-acceleration response,
maximum relative-velocity response, and maximum relative-displacement response
of the input acceleration time series for a given oscillator period and damping
fraction.

 SUBROUTINE CMPMAX (KUG,UG,trash,W,W2,W3,WD,D,DT,ZD,ZV,ZA)
cc
c CMPMAX: Compute maximum response.
c
c CMPMAX was written by I.M. Idriss at U.C. Berkeley 1968, using the
c technique presented by Nigam and Jennings (1969) in
c "Calculation of Response Spectra from Strong-Motion
c Earthquake Records": Bulletin of the Seismological Society
c of America, vol. 59, pp. 909-922.
c
c April Converse made minor changes in 1989 to:
c - add all the comments;
c - change dimension on UG from (8005) to (*);
c - remove write statements.
c Original code is in upper case, April's changes are in
c lower case.
c
c
c On entry --
c KUG = number of samples given in the time series -1.
c >> Note the -1!
c UG() = acceleration time series, cm/sec/sec.
c TRASH= an unused argument that is here for consistency with
c earlier versions of CMPMAX. Was oscillator period,
c in seconds.
c W = oscillator natural frequency = (2*pi)/(oscillator period)
c W2 = w*w
c W3 = w*w*w
c WD = w*sqrt(1.0-d*d)
c D = damping, as fraction of critical damping.
c DT = time-series sampling interval, seconds.
c
c On return --
c ZD = maximum relative displacement response, cm.
c ZV = " " velocity " , cm/sec.
c ZA = " absolute acceleration " , cm/sec/sec.
cc
cwas: DIMENSION UG(8005), XD(2), XV(2), T(3)
 dimension ug(*) , xd(2), xv(2)
C
 ZD = 0.
 ZV = 0.
 ZA = 0.
 XD(1) = 0.
 XV(1) = 0.
 F1 = 2.*D/(W3*DT)
 F2 = 1./W2
 F3 = D*W
 F4 = 1./WD
 F5 = F3*F4
 F6 = 2.*F3
 E = EXP(-F3*DT)
 S = SIN(WD*DT)
 C = COS(WD*DT)
 G1 = E*S
 G2 = E*C
 H1 = WD*G2 - F3*G1
 H2 = WD*G1 + F3*G2
 DO 100 K=1,KUG
 Y = K-1
 DUG = UG(K+1) - UG(K)
 Z1 = F2*DUG
 Z2 = F2*UG(K)
 Z3 = F1*DUG
 Z4 = Z1/DT
 B = XD(1) + Z2 -Z3
 A = F4*XV(1) + F5*B + F4*Z4

 BAP page H-39
 01mar92 Fortran Code

Version 1.0

 XD(2) = A*G1 + B*G2 + Z3 -Z2 - Z1
 XV(2) = A*H1 - B*H2 - Z4
 XD(1) = XD(2)
 XV(1) = XV(2)
 AA = -F6*XV(1) - W2*XD(1)
 F = ABS(XD(1))
 G = ABS(XV(1))
 H = ABS(AA)
 IF(F .LE. ZD) GO TO 75
cwas: T(1) = Y
 ZD = F
 75 IF(G .LE. ZV) GO TO 85
cwas: T(2) = Y
 ZV = G
 85 IF(H .LE. ZA) GO TO 100
cwas: T(3) = Y
 ZA = H
 100 CONTINUE
 RETURN
cccccccccccccccccccc (end of cmpmax) cccccccccccccccccccccccccccccccc
 END

 page H-40 BAP
 Fortran Code 01mar92

Version 1.0

 BAP page R-1
 01mar92 References

Version 1.0

References and Bibliography

[1] Adobe Systems, Inc. (1985). PostScript Language Reference Manual: Addison-
Wesley. 321 pages.

[2] Adobe Systems, Inc. (1985). PostScript Language Tutorial and Cookbook: Addison-

Wesley. 243 pages.

 (The PostScript plot description language used in the AGRAM-PostScript files is

described in references [1] and [2].)

[3] Basili, M. and Brady, A.G., (1978). "Low frequency Filtering and the Selection of

Limits for Accelerogram Corrections" in Proc. 6th European Conf. on Earthquake
Engineering, Dubrovnik, Yugoslavia.

[4] Bracewell, Ronald N. (1978). The Fourier Transform and its Applications: McGraw-

Hill. 444 pages.

[5] Brady, A.G. and Mork, N.M. (1990). Loma Prieta, California, Earthquake; October 18

(GMT), 1989; Processed Strong-Motion Records; Volume I: USGS Open-File Report
number 90-247, USGS, Menlo Park, CA.

[6] Chopra, A.K. (1980). Dynamics of Structures; A Primer: Earthquake Engineering

Research Institute, 2620 Telegraph Avenue, Berkeley, CA 94704. 126 pages.

 (This monograph provides an introduction to response spectra.)

[7] Converse, A.M. (1984). AGRAM: A Series of Computer Programs for Processing

Digitized Strong-Motion Accelerograms: USGS Open-File Report number 84-525,
USGS, Menlo Park, CA. 120 pages.

 (Much of the code used in BAP came from other AGRAM programs.)

[8] Fletcher, J.B., Brady, A.G., and Hanks, T.C. (1980). "Strong-motion Accelerograms

of the Oroville, California, aftershocks: Data Procesing and the Aftershock of 0350
August 6, 1975" in Bulletin of the Seismological Society of America, Vol. 70, pp 243-
367.

[9] Hanks, T.C. and Brady, A.G. (1991). "The Loma Prieta Earthquake, Ground Motion

and Damage in Oakland, Treasusre Island, and San Francisco." in Bulletin of the
Seismological Society of America, Vol. 81, No. 5.

[10] Hanks, T.C. (1975). "Strong Ground Motion of the San Fernando, California,

Earthquake; Ground Displacements" in Bulletin of the Seismological Society of
America, Vol. 65, No. 1. pp 193-225.

 page R-2 BAP
 References 01mar92

Version 1.0

[11] Hudson, D.E. (1979). Reading and Interpreting Strong Motion Accelerograms:

Earthquake Engineering Research Institute, 2620 Telegraph Avenue, Berkeley, CA
94704. 112 pages.

 (This monograph provides an introduction to strong-motion accelerograms and

their processing. It describes the computer processing used in the CalTech strong
motion data project during the 1960s and early 1970s.)

[12] Iwan, W.D.; Moser, M.A.; and Peng, Chia-Yen (1985). "Some Observations on

Strong-Motion Earthquake Measurement Using a Digital Accelerograph" in Bulletin
of the Seismological Society of America, Vol. 75, No. 5. pp 1225-1246.

[13] Joyner, William B.; and Boore, David M. (1988). "Measurement, Characterization,

and Prediction of Strong Ground Motion" in Proceedings of Earthquake Engineering &
Soil Dynamics II; GT Div/ASCE, Park City, Utah.

[14] Mueller, Charles (1990). Computer Programs for Analyzing Digital Seismic Data:

USGS Open-File Report number 90-35, USGS, Menlo Park, CA. 100 pages.

[15] Mueller, Charles; and Glassmoyer, Gary (1990). Digital Recordings of Aftershocks of

the 17 October 1989 Loma Prieta, California, Earthquake: USGS Open-File Report
number 90-503, USGS, Menlo Park, CA. 147 pages.

 (This report describes the time-series data files on one of the CD-ROMs available

form the USGS. The files are in a different format than those on the Strong-Motion
CD-ROM described in Reference [20], but IMPORT/EXPORT support programs
provided with BAP should eventually be updated to accept and produce files in
this format too.)

[16] Nigam, N.C. and Jennings, P.C. (1969). "Calculation of Response Spectra from

Strong-Motion Earthquake Records": Bulletin of the Seismological Society of America,
vol. 59, pp. 909-922.

[17] Oppenheim, A.V., and Schafer, R.W. (1975). Digital Signal Processing: Prentice-Hall,

Englewood Cliffs, NJ. 585 pages.

 (Pages 110 through 113 of this textbook describe the overlap-add method used in

the BAP instrument correcting subroutine, FDIC.)

[18] Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; and Vetterling, W.T. (1986).

Numerical Recipes: The Art of Scientific Computing: Cambridge University Press,
New York, NY. 818 pages.

 (The copyrighted FFT subroutines, REALFT and FOUR1b, came from this textbook

and are used in BAP with permission from Numerical Recipes Software.)

[19] Schnabel, P.B.; Lysmer, John; and Seed, H.B. (1972). SHAKE: a Computer Program

for Earthquake Response Analysis of Horizontally Layered Sites: Earthquake
Engineering Research Center report number EERC 72-12, College of Engineering,
University of California, Berkely, CA. 104 pages.

 (The CMPMAX subroutine used to calculate response spectra in BAP came from

the SHAKE program.)

[20] Seekins, L.C.; Brady, A.G.; Carpenter, C.; and Brown, N. (1992) Digitized Strong-

Motion Accelerograms of North and Central American Earthquakes 1933-1986: USGS
Digital Data Series DDS-7.

 (This publication is a CD-ROM that contains over 4000 SMC-format time-series

data files that BAP can accept as input. CD-ROMs are read-only compact disks that
can be read by computer, provided a CD-ROM reader is installed on the computer.
The disks are the same as those used for compact-disk musical recordings. The CD-
ROM is sold by the Books and Open-File Reports Section of the USGS, address and
phone number for which are given on the back side of the title page to this report.)

 BAP page R-3
 01mar92 References

Version 1.0

[21] Trifunac, M.D., and Lee, V.W. (1979). Automatic Digitization and Processing of
Strong Motion Accelerograms: Department of Civil Engineering, Report number 79-
15 I and II, University of Southern California, Los Angeles, CA.

 (These reports describe the strong motion accelerogram processing used at USC

and at the California Division of Mines and Geology.)

Other PC software packages that can be used to process strong-motion earthquake time
series include:

[22] Kinnemetrics, Inc. (1989). Seismic Workstation Software; User's Manual:

Kinnemetrics, Pasadena, CA.

[23] Lee, W.H.K., editor (1989). IASPEI Software Library, Volumnes I and II: International

Association of Seismology and Physics of the Earth's Interior, in collaboration with
the Seismological Society of America, El Cerrito, CA.

 (More volumes are planned for this series. Future versions of this report and future

versions of Reference [25] may be inculded.)

[24] The Math Works, Inc. (1989). MATLAB for 80386 Personal Computers and Signal

Processing Toolbox: The Math Works, Inc. South Natick, MA.

[25] Scherbaum, Frank, and Johnson, James (1991). PITSA: Programmable Interactive

Toolbox for Seismological Analysis, Version 3.0: Institut für Allgemeine und
Angewandte Geophysik der Ludwig Maximilians Universität, München, Germany.

 (This software package will probably be offered in the future as another volume in

the series cited in Reference [23].)

References [14], [19], and [21], above, describe software packages that are used to process
strong-motion earthquake records on computers other than PCs.

